РУКОВОДЯЩИЕ МАТЕРИАЛЫ
ПО ПРОЕКТИРОВАНИЮ РАСПРЕДЕЛИТЕЛЬНЫХ ЭЛЕКТРИЧЕСКИХ СЕТЕЙ
(РУМ)

3
2003

РАСПРЕДЕЛИТЕЛЬНЫЕ ЭЛЕКТРИЧЕСКИЕ СЕТИ
Москва
РУКОВОДЯЩИЕ МАТЕРИАЛЫ
ПО ПРОЕКТИРОВАНИЮ ЭЛЕКТРОСНАБЖЕНИЯ СЕЛЬСКОГО ХОЗЯЙСТВА

Выпуск 3

Москва 2003
СОДЕРЖАНИЕ

05. Подстанции напряжением 35 кВ и выше
ИММ №05.02-2003 от 15.05.2003.
Об информационном письме Департамента научно-технической политики и международного сотрудничества и Департамента электрических сетей ОАО «ФСК ЕЭС» ИП-01-2003 (Э) о применении электромагнитных антirezонансных трансформаторов НАМИ 110, 220 и 330 кВ...4

07. Линии электропередачи 10(6) кВ
ИММ №07.04-2003 от 15.05.2003.
Об информационном письме Департамента научно-технической политики и международного сотрудничества и Департамента электрических сетей ОАО «ФСК ЕЭС» ИП-02-2003(Э) о применении длинно-искровых разрядников РДИП-10-4-УХЛ1 на ВЛ 6-10 кВ...7

05. Подстанции напряжением 35 кВ и выше
ИММ №05.01-2003 от 15.05.2003.
О выпуске шкафа ШОПНД-1(2) Люберецким ЭМЗ..............................10

06. Низковольтные линии электропередачи
ИММ №06.02-2003 от 19.05.2003.
Рекомендации и справочные материалы для проектирования воздушных линий электропередачи напряжением 0,38 кВ с самонесущими изолированными проводами (СИП)..12

04. Подстанции напряжением 10(6) кВ и сетевые пункты
О секционирующих пунктах ВЛ 10 кВ Люберецкого ЭМЗ......................58

09. Средства диспетчерского и технологического управления
ИММ №09.01-2003 от 05.05.2003.
Об аппаратуре высокочастотной связи с цифровой обработкой сигналов (АВЦ)...62
ИММ №09.02-2003 от 05.05.2003.
О новых элементах настройки для высокочастотных заградителей..........69
ИММ №09.03-2003 от 05.05.2003.
О высокочастотных заградителях спиральных типа ЗВС-200-0,5............73
ОАО «РОСЭП» предлагает выполнить экономические расчеты............77
Информационные и методические материалы
по проектированию распределительных электрических сетей

15.05.2003

Москва

По сообщению Департамента научно-технической политики и международного сотрудничества и Департамента электрических сетей ОАО «ФСК ЕЭС» (информационное письмо от 02.04.2003 № ИП-01-2003(Э)) ОАО Раменский электротехнический завод «Энергия» освоил производство электромагнитных антирезонансных трансформаторов напряжения серии НАМИ-100, 220 и 330 кВ.

Трансформаторы НАМИ по сравнению с трансформаторами типа НКФ обладают антирезонансным свойством, позволяющим устанавливать их в распределительных устройствах, подверженных феррозондальным процессам.

Первый заместитель генерального директора
А.С.Лисковец
Открытое акционерное общество
Федеральная сетевая компания Единой энергетической системы

Департамент научно-технической политики и международного сотрудничества
Департамент электрических сетей

Информационное письмо ИП-01-2003 (Э)
О применении электромагнитных антirezонансных трансформаторов напряжения серии НАМИ напряжением 110, 220 и 330 кВ

г. Москва 02 апреля 2003г.

За последние годы ОАО Раменский электротехнический завод «Энергия» разработал и освоил производство электромагнитных антirezонансных трансформаторов напряжения серии НАМИ-110, 220 и 330 кВ. Трансформаторы успешно прошли комплекс испытаний на соответствие требованиям российских стандартов и приняты межведомственной комиссией.

Трансформаторы НАМИ выпускаются в двух вариантах - с одной основной вторичной обмоткой (класс точности 0,5) и двумя основными вторичными обмотками (класс точности 0,5 и 0,2). Основная вторичная обмотка класса точности 0,2 предусмотрена для коммерческого учета электроэнергии. Выводы этой обмотки заведены в отдельную клеммную коробку с возможностью ее пломбирования для предотвращения несанкционированного доступа.

Для защиты внутренней маслобарьерной изоляции от увлажнений в трансформаторах НАМИ применен многообъемный масляный затвор, вместо силикателевого огнестойкого патрона.

Трансформаторы НАМИ по сравнению с трансформаторами типа НКФ обладают антirezонансным свойством, позволяющим устанавливать их в распределительных устройствах, подверженных феррорезонаным процессам (РУ с выключателями, содержащими емкостные делители напряжения). Для исключения возможности возникновения феррорезонанса в магнитопровод НАМИ дополнительно введены пластины толстолистовой конструкционной стали.
Антирезонансные свойства трансформаторов НАМИ подтверждены эксплуатационными испытаниями на трех ПС-220кВ ОАО «Мосэнерго». Испытания проводились в РУ 220кВ с выключателями типа ВМТ-220, ВВБ-220 и ВВД-220 (с продольными емкостями на полюс 550, 825 и 1650 пФ).

Департамент научно-технической политики и международного сотрудничества и Департамент электрических сетей рекомендуют проектным институтам и энергообъектам использовать трансформаторы серии НАМИ 110, 220 и 330 кВ при строительстве, модернизации и реконструкции РУ, а также применять их наряду с емкостными трансформаторами напряжения в схемах РУ, где могут иметь место феррорезонансные процессы.

Адрес и телефоны ОАО РЭТЗ «Энергия»:
140105, Московская область, г. Раменское, ул. Левашова, 21.
Тел/факс: (096-46) 3-66-93, 7-96-79. Код из Москвы-246.
http://www.ramenerg.ru
E-mail: energ-mark@scorpion.aviel.ru

Начальник Департамента научно-технической политики и международного сотрудничества
Ю.Н. Кучеров
Начальник Департамента электрических сетей
Ю.А. Дементьев
Информационные и методические материалы
по проектированию распределительных электрических сетей

15.05.2003

Москва

/Об информационном письме Департамента научно-технической политики и международного сотрудничества и Департамента эл. сетей ОАО «ФСК ЕЭС» от 25.04.2003 № ИП-02-2003(Э)
о применении длинно-искровых разрядников РДИП-10-4-УХЛ1 на ВЛЗ 6-10 кВ/

По сообщению Департамента научно-технической политики и международного сотрудничества и Департамента электрических сетей ОАО «ФСК ЕЭС» (информационное письмо от 25.04.2003 № ИП-02-2003(Э)) ОАО НПО «Стример» выпускает разрядники петлевого типа РДИП-10-4-УХЛ1, предназначенные для защиты от индуктивных перенапряжений на воздушных линиях электропередачи 6-20 кВ с защищенными проводами при прохождении по открытой или высокой местности, а также в зонах со среднегодовой продолжительностью гроз 40 часов и более.

Первый заместитель генерального директора А.С. Лисковец
Открытое акционерное общество
Федеральная сетевая компания Единой энергетической системы

Департамент научно-технической политики и
международного сотрудничества
Департамент электрических сетей

Информационное письмо ИП-02-2003 (Э)
О применении длинно-искровых разрядников в электрических
сетях 6-10 кВ

г. Москва 25 апреля 2003 г.

В соответствии с требованиями «Правил устройства воздушных ли-
nий электропередачи напряжением 6-20 кВ с защищенными проводами»
(ПУ ВЛЗ 6-20 кВ) при прохождении ВЛЗ по открытой или высокой мест-
nости, а также в зонах со среднегодовой продолжительностью гроз 40 час-
сов и более ВЛЗ должны быть защищены устройствами грозозащиты.

В качестве устройств грозозащиты на ВЛЗ до настоящего времени ис-
пользуются дугозащитные устройства типа SE20.1 и SE 20.2 фирмы
ENSTO (Финляндия), которые устанавливаются на каждой опоре во всех
трех фазах. Дугозащитные устройства способствуют переходу однофазных
замыканий на землю в межфазные короткие замыкания с отключением
ВЛ от релейной защиты с последующим АПВ. При этом возникают допол-
nительные аварийные коммутации, термические и электродинамические
воздействия на оборудование ВЛ и подстанций.

В целях улучшения грозозащиты ВЛ 6-10 кВ научно-техническим со-
ветом ОАО РАО «ЕЭС России» от 24.03.2000г. признано перспективным
применение длинно-искровых разрядников (РДИ), основанных на принци-
pе удлинения пути импульсного перекрытия для снижения вероятности
перехода импульсного перекрытия в силовую дугу.

В настоящее время Межведомственной комиссией приняты и выпус-
каются по утвержденным ТУ разрядники петлевого типа
РДИП-10-4-УХЛ1, предназначенные для защиты от индуцированных пе-
ренапряжений.
Разрядники имеют изоляционное покрытие и устанавливаются по одному разряднику на опоре параллельно изолятору одной из фаз с последовательным их чередованием.

Разрядники не подвержены разрушающему воздействию токов молнии и сопровождающих дуговых замыканий, за счет наличия искрового промежутка не находятся под рабочим напряжением, не требуют обслуживания в процессе эксплуатации.

Для повышения эксплуатационной надежности рекомендуем устанавливать разрядники петлевого типа на ВЛЗ 6-10 кВ.

По вопросам приобретения и научно-технического сопровождения при внедрении разрядников типа РДИП обращаться в ОАО НПО «Стример»:

193024, Санкт-Петербург, Невский пр., 147, офис 49
tел./факс, (812) 327-08-08, тел. 247-88-25, тел./факс 247-53-50.

По вопросам установки разрядников типа РДИП на опорах ВЛ с защищенными проводами обращаться в головную организацию по распределительным электрическим сетям ОАО «РОСЭП»:

111395, Москва, Аллея Первой Маевки, 15,
tел (095) 374-66-01, тел./факс 374-66-08.

Начальник Департамента научно-технической политики и международного сотрудничества Ю.Н. Кучеров
Начальник Департамента электрических сетей Ю.А. Дементьев
Информационные и методические материалы
по проектированию распределительных
электрических сетей

15.05.2003

Москва

/О выпуске шкафа ШОПНД-1(2)
ОАО «Люберецкий ЭМЗ»/

Сообщаем, что ОАО «Люберецкий ЭМЗ» освоил серийный выпуск
шкафов ШОПНД-1(2), предназначенных для защиты электрооборудования от
перенапряжений, возникающих при коммутации нагрузки вакуумными
выключателями напряжением 6-10 кВ.

Основание: информация ОАО «Люберецкий ЭМЗ».

Первый заместитель генерального директора

А.С. Лисковец
Шкаф ШОПНД

В связи с начавшимся широким применением на КРУ- и КСО-строительных заводах вакуумных выключателей, возникла необходимость защиты электрооборудования от 5-6 кратных всплесков перенапряжения, возникающих при коммутации нагрузки вакуумными выключателями на напряжения 6-10 кВ. Особенно опасны указанные кратности перенапряжения для обмоток электродвигателей, трансформаторов и длительно находящихся в эксплуатации кабелей с изношенной изоляцией.

ОАО "ЛЭМЗ" совместно с ОАО ВНИПИ "Тяжпромэлектропроект" освоил серийный выпуск шкафов ШОПНД, предназначенных для защиты электрооборудования от коммутационных перенапряжений.

Шкаф ШОПНД-1 предназначен для защиты трансформаторов и двигателей 6(10) кВ от перенапряжений возникающих при коммутациях вакуумных выключателей и рекомендуется к применению при длине кабеля между КРУ и электродвигателем более 50 м.

Шкаф ШОПНД-2 применяется при длине кабеля менее 50 м (при условии, что 3 ОПН по схеме "фаза-земля" установлены в КРУ).

Ввод кабеля осуществляется через сигнальки в днище шкафа.

Шкаф ШОПНД может поставляться в навесном исполнении или на подставке.

Технические параметры

- Номинальное напряжение, кВ: 3,3; 6; 10
- Ток термической стойкости, кА: 20
- Тип устанавливаемых разрядников: ОПН-РТ/ТЭЛ
- Степень защиты: IP54 ГОСТ 14254-80
- Количество подключаемых кабелей: 4(3х240)

При необходимости шкафы ШОПНД могут поставляться в комплекте с КРУ типа КМ-1Ф, выпускаемыми Люберецким электромеханическим заводом.

При заказе необходимо указать тип шкафа, номинальное напряжение, номинальный ток термической стойкости, вид установки, диаметры подключаемых кабелей, количество шкафов.

Пример заказа: ШОПНД-2, Un=10кВ, In.тер.ст =20кА, установка на подставке, количество подключаемых кабелей-2(3х70).

Более подробную информацию можно получить по адресу:
ОАО "Люберецкий электромеханический завод"
140000, г. Люберцы Московской обл., ст. Люберцы-2 Московской ж.д.

Контактные телефоны:
558-20-49 - Главный конструктор Нахимович Леонид Гершевич
558-20-40 - Начальник отдела маркетинга Гущин Виктор Петрович
558-20-40 - отдел маркетинга
Тел./факс 554-50-00
Открытое акционерное общество по проектированию сетевых и энергетических объектов
ОАО «РОСЭП»

ИНФОРМАЦИОННЫЕ И МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ
по проектированию распределительных электрических сетей

19.05.2003

Москва

/Справочные материалы для проектирования воздушных линий электропередачи напряжением 0,38 кВ с самонесущими изолированными проводами (СИП)/

В дополнение к РУМ-2001 выпуски N 2 и N 5 ИММ N 06.01-2001 от 15.01.2001 и ИММ N 06.03-2001 от 28.02.2001 публикуем справочные материалы для проектирования воздушных линий электропередачи напряжением 0,38 кВ с самонесущими изолированными проводами (СИП).

В настоящей информации:
- приведены вспомогательные справочные материалы и общие рекомендации, предназначенные для проектирования ВЛИ 0,38 кВ с СИП-2, СИП-2А, СИП-4;
- приведен прайс-лист на соединительную и подвесную арматуру для СИП французской фирмы ООО «НИЛЕД», а также потребность в линейной арматуре для подвески СИП-2А, СИП-2, СИП-4 данной фирмы;

Первый заместитель генерального директора

А.С. Лисковец
РЕКОМЕНДАЦИИ И СПРАВОЧНЫЕ МАТЕРИАЛЫ
ДЛЯ ПРОЕКТИРОВАНИЯ ВОЗДУШНЫХ ЛИНИЙ
ЭЛЕКТРОПЕРЕДАЧИ НАПРЯЖЕНИЕМ 0,38 кВ С САМОНЕСУЩИМИ
ИЗОЛИРОВАННЫМИ ПРОВОДАМИ (СИП)
(дополнительно к РУМ № 2 и № 5 за 2001 г.)

Проектирование и строительство воздушных линий 0,38 кВ с изолированными самонесущими проводами (ВЛИ 0,38 кВ) с соблюдением основных правил применения обеспечивает эксплуатационной организации качественное, надежное и экономичное энергоснабжение потребителя.

Основные преимущества применения СИП:

- снижает эксплуатационные расходы (не требует систематической расчистки трасс, замены изолаторов и т. п.);
- уменьшает падения напряжения и потери электроэнергии в линиях;
- повышает устойчивость к атмосферным воздействиям;
- не нарушает электроснабжение потребителей при повреждениях опор ВЛИ 0,38 кВ и контактах СИП с внешними объектами (стволами и ветвями деревьев) или при «набросах» на провода и т. д.;
- позволяет совместную подвеску на опорах проводов с разным уровнем напряжения и линий связи;
- снижает материалоемкость опорных конструкций (особенно при проектировке СИП по фасадам зданий);
- исключает затраты, связанные с восстановлением электроснабжения при схлестывании неизолированных проводов, снижает пожароопасность;
- сводит к минимуму несанкционированные подключения к ВЛИ 0,38 кВ и случаи вандализма и воровства;
- позволяет проводить техническое обслуживание и ремонт ВЛИ 0,38 кВ под напряжением, их строительство в зонах отдыха и зеленых массивах, а также повышает электробезопасность.

На ВЛИ до 1 кВ применяются СИП различных конструкций:

- СИП с изолированной несущей нулевой жилой (Франция, Греция, Италия, Испания, Аргентина, Бельгия, Бразилия, Индонезия, Израиль, Малайзия, Монголия, Шри-Ланка, Польша, Португалия, Россия, Казахстан);
- СИП с неизолированной несущей нулевой жилой (Финляндия, Южно-африканская республика, Чехия, Россия);
- СИП - четырехпроводная система типа «Alus» (Австрия, Великобритания, Германия, Швеция, Норвегия, Польша).
В электрических сетях энергосистем и коммунальных предприятий России наибольшее распространение получила конструкция СИП-2А с изолированным нулевым несущим проводом. При незначительном удороожании конструкции СИП с изолированным несущим нулевым проводом значительно возрастает надежность, безопасность при эксплуатации и монтаже в сравнении с СИП с неизолированным несущим проводом.

СИП-2А отличается от других конструкций следующие параметры: меньший риск короткого замыкания между фазой и нулевым проводом, коррозийная стойкость, высокая устойчивость к атмосферным перенапряжениям, возможность прокладки по стенам зданий и сооружений, выполнение ответвлений без отключения линии.

К настоящему времени серийное производство проводов СИП-2 (СИП - АМКА) и СИП-2А (СИП - ТОРСАДА) с нулевыми несущими жилами из алюминиевого сплава АВЕ высокой прочности по стандарту НД 626 SI осуществляется на заводах ОАО «Иркутсккабель» и ЗАО «Москабельмет».

Прайс-листы основных заводов-изготовителей на СИП напряжением 0,6/1 кВ приведены в приложении.

При проектировании ВЛ порядка 0,38 кВ ОАО «РОСЭП» рекомендуется применять СИП-2 и СИП-2А с нулевыми несущими жилами из алюминиевого сплава АВЕ.

СИП-2 - вокруг неизолированного несущего нулевого провода скручены изолированные фазные провода. Несущая нулевая жила выполнена из алюминиевого сплава АВЕ высокой прочности или алюминиевого провода упрочненного стальной проволокой. Изоляция выполнена из светостабилизированного сшитого полиэтилена (СПЭ).

СИП-2А - вокруг изолированного несущего нулевого провода скручены изолированные фазные провода. Несущая нулевая жила выполнена из алюминиевого сплава АВЕ или алюминиевого провода упрочненного стальной проволокой. Изоляция всех проводов выполнена из светостабилизированного СПЭ.

СИП-2, СИП-2А выпускаются по техническим условиям ТУ16.К71.268-98. Провода по конструктивному исполнению, техническим характеристикам и эксплуатационным свойствам соответствуют стандарту НД 626 SI Европейского комитета по стандартизации в электротехнике (CENELEC).

В таблице приведены основные технические характеристики и параметры проводов на напряжение до 0,6/1 кВ СИП-2 и СИП-2А.
<table>
<thead>
<tr>
<th>Количество проводов, номинальное сечение, мм²</th>
<th>Диаметр, мм</th>
<th>Расчетная масса, кг/㎞</th>
<th>Разрывная прочность жилы, кН не менее</th>
<th>Допустимый ток нагрузки, А</th>
<th>Односекундный ток КЗ, кА</th>
<th>Электрическое сопротивление постоянному току фазной / нулевой жилы Ом/㎞, не более</th>
</tr>
</thead>
<tbody>
<tr>
<td>1×16 + 1×25</td>
<td>14</td>
<td>135</td>
<td>7,4</td>
<td>105</td>
<td>1,5</td>
<td>1,91/1,38</td>
</tr>
<tr>
<td>3×16 + 1×25</td>
<td>21</td>
<td>270</td>
<td>7,4</td>
<td>100</td>
<td>1,5</td>
<td>1,91/1,38</td>
</tr>
<tr>
<td>3×25 + 1×35</td>
<td>25</td>
<td>390</td>
<td>10,3</td>
<td>130</td>
<td>2,3</td>
<td>1,20/0,986</td>
</tr>
<tr>
<td>3×35 + 1×50</td>
<td>29</td>
<td>530</td>
<td>14,2</td>
<td>160</td>
<td>3,2</td>
<td>0,868/0,72</td>
</tr>
<tr>
<td>3×50 + 1×50</td>
<td>32</td>
<td>685</td>
<td>14,2</td>
<td>195</td>
<td>4,6</td>
<td>0,641/0,72</td>
</tr>
<tr>
<td>3×50 + 1×70</td>
<td>34</td>
<td>740</td>
<td>20,6</td>
<td>195</td>
<td>4,6</td>
<td>0,641/0,493</td>
</tr>
<tr>
<td>3×70 + 1×70</td>
<td>37</td>
<td>930</td>
<td>20,6</td>
<td>240</td>
<td>6,5</td>
<td>0,443/0,493</td>
</tr>
<tr>
<td>3×70 + 1×95</td>
<td>39</td>
<td>990</td>
<td>27,9</td>
<td>240</td>
<td>6,5</td>
<td>0,443/0,363</td>
</tr>
<tr>
<td>3×95 + 1×70</td>
<td>41</td>
<td>1190</td>
<td>20,6</td>
<td>300</td>
<td>8,8</td>
<td>0,320/0,493</td>
</tr>
<tr>
<td>3×95 + 1×95</td>
<td>43</td>
<td>1255</td>
<td>27,9</td>
<td>300</td>
<td>8,8</td>
<td>0,320/0,363</td>
</tr>
<tr>
<td>3×120 + 1×95</td>
<td>46</td>
<td>1480</td>
<td>27,9</td>
<td>340</td>
<td>7,2</td>
<td>0,253/0,363</td>
</tr>
<tr>
<td>4×16 + 1×25</td>
<td>21</td>
<td>340</td>
<td>7,4</td>
<td>100</td>
<td>1,5</td>
<td>1,91/1,38</td>
</tr>
<tr>
<td>4×25 + 1×35</td>
<td>25</td>
<td>490</td>
<td>10,3</td>
<td>130</td>
<td>2,3</td>
<td>1,20/0,986</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Количество проводов, номинальное сечение, мм²</th>
<th>Диаметр, мм</th>
<th>Расчетная масса, кг/㎞</th>
<th>Разрывная прочность жилы, кН не менее</th>
<th>Допустимый ток нагрузки, А</th>
<th>Односекундный ток КЗ, кА</th>
<th>Электрическое сопротивление постоянному току фазной / нулевой жилы Ом/㎞, не более</th>
</tr>
</thead>
<tbody>
<tr>
<td>3×25 + 1×54,6</td>
<td>30</td>
<td>500</td>
<td>16,6</td>
<td>130</td>
<td>2,3</td>
<td>1,20/0,630</td>
</tr>
<tr>
<td>3×35 + 1×54,6</td>
<td>33</td>
<td>600</td>
<td>16,6</td>
<td>160</td>
<td>3,2</td>
<td>0,868/0,630</td>
</tr>
<tr>
<td>3×50 + 1×54,6</td>
<td>36</td>
<td>760</td>
<td>16,6</td>
<td>195</td>
<td>4,6</td>
<td>0,641/0,630</td>
</tr>
<tr>
<td>3×70 + 1×54,6</td>
<td>38</td>
<td>945</td>
<td>16,6</td>
<td>240</td>
<td>6,5</td>
<td>0,443/0,630</td>
</tr>
</tbody>
</table>

СИП без несущего троса типа «Рассвет» (СИП-4) или 4-проводная система на напряжение 0,6/1 кВ, выпускаемая ОАО «Севкабель», известна в России под торговыми марками «Alus» и «EX». Токопроводящие жилы (фазные и нулевая) выполнены из алюминия равного сечения. Подвеска СИП осуществляется специальной линейной арматурой за жгут. Прочность провода определяется сложением прочности всех проводов с уменьшающим коэффициентом.

Материалы изоляции СИП:
- СИП-4. Изоляция жил из термопластичного светостабилизированного полиэтилена.
- СИПн-4. Изоляция жил из светостабилизированной полимерной композиции, не распространяющей горения.
- СИПс-4. Изоляция жил из светостабилизированного СПЭ.

СИП-4 выпускаются по ТУ 3553-015-05755714-2002 и соответствует: СИП-4 – европейскому стандарту HD 626 S1-96 ч. 3 раздел 1; СИПс-4 - немецкому стандарту DIN VDE 0274.
Технические характеристики провода СИП-4 (ТУ 3553-015-05755714-2002)

<table>
<thead>
<tr>
<th>Количество проводов, номинальное сечение, мм²</th>
<th>Диаметр, мм</th>
<th>Расчетная масса, кг/км</th>
<th>Разрывная прочность жилы, кН не менее</th>
<th>Допустимый ток нагрузки, А</th>
<th>Односекундный ток КЗ, кА</th>
<th>Электрическое сопротивление постоянному току фазной и нулевой жилы Ом/км, не более</th>
</tr>
</thead>
<tbody>
<tr>
<td>2х25</td>
<td>19</td>
<td>202</td>
<td>4,1</td>
<td>95</td>
<td>1,6</td>
<td>1,2</td>
</tr>
<tr>
<td>2х35</td>
<td>20</td>
<td>264</td>
<td>5,6</td>
<td>115</td>
<td>2,3</td>
<td>0,868</td>
</tr>
<tr>
<td>2х50</td>
<td>23</td>
<td>363</td>
<td>7,3</td>
<td>140</td>
<td>3,2</td>
<td>0,641</td>
</tr>
<tr>
<td>2х70</td>
<td>27</td>
<td>490</td>
<td>10,8</td>
<td>180</td>
<td>4,5</td>
<td>0,443</td>
</tr>
<tr>
<td>2х95</td>
<td>31</td>
<td>637</td>
<td>13,7</td>
<td>220</td>
<td>6,0</td>
<td>0,320</td>
</tr>
<tr>
<td>2х120</td>
<td>34</td>
<td>813</td>
<td>16,8</td>
<td>250</td>
<td>7,6</td>
<td>0,253</td>
</tr>
<tr>
<td>3х25</td>
<td>20</td>
<td>303</td>
<td>4,1</td>
<td>95</td>
<td>1,6</td>
<td>1,2</td>
</tr>
<tr>
<td>3х35</td>
<td>22</td>
<td>396</td>
<td>5,6</td>
<td>115</td>
<td>2,3</td>
<td>0,868</td>
</tr>
<tr>
<td>3х50</td>
<td>25</td>
<td>540</td>
<td>7,3</td>
<td>140</td>
<td>3,2</td>
<td>0,641</td>
</tr>
<tr>
<td>3х70</td>
<td>29</td>
<td>735</td>
<td>10,8</td>
<td>180</td>
<td>4,5</td>
<td>0,443</td>
</tr>
<tr>
<td>3х95</td>
<td>33</td>
<td>1031</td>
<td>13,7</td>
<td>220</td>
<td>6,0</td>
<td>0,320</td>
</tr>
<tr>
<td>3х120</td>
<td>36</td>
<td>1219</td>
<td>16,8</td>
<td>250</td>
<td>7,6</td>
<td>0,253</td>
</tr>
<tr>
<td>4х25</td>
<td>23</td>
<td>404</td>
<td>4,1</td>
<td>95</td>
<td>1,6</td>
<td>1,2</td>
</tr>
<tr>
<td>4х35</td>
<td>24</td>
<td>528</td>
<td>5,6</td>
<td>15</td>
<td>2,3</td>
<td>0,868</td>
</tr>
<tr>
<td>4х50</td>
<td>29</td>
<td>718</td>
<td>7,3</td>
<td>140</td>
<td>2,3</td>
<td>0,641</td>
</tr>
<tr>
<td>4х70</td>
<td>32</td>
<td>980</td>
<td>10,8</td>
<td>180</td>
<td>4,5</td>
<td>0,443</td>
</tr>
<tr>
<td>4х95</td>
<td>39</td>
<td>1375</td>
<td>13,7</td>
<td>220</td>
<td>6,0</td>
<td>0,320</td>
</tr>
<tr>
<td>4х120</td>
<td>41</td>
<td>1625</td>
<td>16,8</td>
<td>250</td>
<td>7,6</td>
<td>0,253</td>
</tr>
</tbody>
</table>

СИП-4

<table>
<thead>
<tr>
<th>Количество проводов, номинальное сечение, мм²</th>
<th>Диаметр, мм</th>
<th>Расчетная масса, кг/км</th>
<th>Разрывная прочность жилы, кН не менее</th>
<th>Допустимый ток нагрузки, А</th>
<th>Односекундный ток КЗ, кА</th>
<th>Электрическое сопротивление постоянному току фазной и нулевой жилы Ом/км, не более</th>
</tr>
</thead>
<tbody>
<tr>
<td>2х25</td>
<td>19</td>
<td>202</td>
<td>4,1</td>
<td>130</td>
<td>1,6</td>
<td>1,2</td>
</tr>
<tr>
<td>2х35</td>
<td>20</td>
<td>264</td>
<td>5,6</td>
<td>160</td>
<td>2,3</td>
<td>0,868</td>
</tr>
<tr>
<td>2х50</td>
<td>23</td>
<td>363</td>
<td>7,3</td>
<td>195</td>
<td>3,2</td>
<td>0,641</td>
</tr>
<tr>
<td>2х70</td>
<td>27</td>
<td>490</td>
<td>10,8</td>
<td>240</td>
<td>4,5</td>
<td>0,443</td>
</tr>
<tr>
<td>2х95</td>
<td>31</td>
<td>637</td>
<td>13,7</td>
<td>290</td>
<td>6,0</td>
<td>0,320</td>
</tr>
<tr>
<td>2х120</td>
<td>34</td>
<td>813</td>
<td>16,8</td>
<td>340</td>
<td>7,6</td>
<td>0,253</td>
</tr>
<tr>
<td>3х25</td>
<td>20</td>
<td>303</td>
<td>4,1</td>
<td>130</td>
<td>1,6</td>
<td>1,2</td>
</tr>
<tr>
<td>3х35</td>
<td>22</td>
<td>396</td>
<td>5,6</td>
<td>160</td>
<td>2,3</td>
<td>0,868</td>
</tr>
<tr>
<td>3х50</td>
<td>25</td>
<td>540</td>
<td>7,3</td>
<td>195</td>
<td>3,2</td>
<td>0,641</td>
</tr>
<tr>
<td>3х70</td>
<td>29</td>
<td>735</td>
<td>10,8</td>
<td>240</td>
<td>4,5</td>
<td>0,443</td>
</tr>
<tr>
<td>3х95</td>
<td>33</td>
<td>1031</td>
<td>13,7</td>
<td>290</td>
<td>6,0</td>
<td>0,320</td>
</tr>
<tr>
<td>3х120</td>
<td>36</td>
<td>1219</td>
<td>16,8</td>
<td>340</td>
<td>7,6</td>
<td>0,253</td>
</tr>
<tr>
<td>4х25</td>
<td>23</td>
<td>404</td>
<td>4,1</td>
<td>130</td>
<td>1,6</td>
<td>1,2</td>
</tr>
<tr>
<td>4х35</td>
<td>24</td>
<td>528</td>
<td>5,6</td>
<td>160</td>
<td>2,3</td>
<td>0,868</td>
</tr>
<tr>
<td>4х50</td>
<td>29</td>
<td>718</td>
<td>7,3</td>
<td>195</td>
<td>3,2</td>
<td>0,641</td>
</tr>
<tr>
<td>4х70</td>
<td>32</td>
<td>980</td>
<td>10,8</td>
<td>240</td>
<td>4,5</td>
<td>0,443</td>
</tr>
<tr>
<td>4х95</td>
<td>39</td>
<td>1375</td>
<td>13,7</td>
<td>290</td>
<td>6,0</td>
<td>0,320</td>
</tr>
<tr>
<td>4х120</td>
<td>41</td>
<td>1625</td>
<td>16,8</td>
<td>340</td>
<td>7,6</td>
<td>0,253</td>
</tr>
</tbody>
</table>
Введение

Экономическая эффективность применения СИП на ВЛ 0,38 кВ определяется на стадии проектирования этих линий и зависит от принятых проектных решений с максимальной реализацией следующих вариантов строительства:

- строительство ВЛИ с подвеской 2-х и более цепей;
- применение более длинных пролетов на переходах через инженерные сооружения;
- совместная подвеска проводов ВЛ напряжением 0,38 и 6…10 кВ;
- прокладка ВЛИ по фасадам зданий и сооружений;
- применения более коротких стоек;
- отказ от строительства второй линии на другой стороне улицы вследствие увеличения габарита при применении обычных стоек.

При расстановке опор, определении пролетов и подбore тяжения СИП всегда необходимо учитывать возможность подвески дополнительных цепей, что позволит адаптировать ВЛИ к изменениям электрических нагрузок на весь период эксплуатации линии (до 40 лет) без коренной реконструкции.

Уличное освещение рекомендуется проектировать и выполнять отдельным жгутом СИП, так как изменение световой нагрузки не всегда совпадает с изменением сетевых нагрузок и в таком варианте осветительная сеть может развиваться самостоятельно при относительно небольших инвестициях.

Реализации вышеперечисленных вариантов осуществляется на этапе предварительной проектной подготовки с участием Заказчика.

1. Общие положения

1.1. Рекомендации для проектирования сетей напряжением 0,4 кВ (в дальнейшем по тексту раздела Рекомендации) разработаны в качестве общих указаний по применению на ВЛИ до 1 кВ проводов СИП-2А или СИП-Торсага и линейной арматуры (на примере фирмы НИЛЕД). В Рекомендациях приводятся требования, относящиеся к размещению и техническим параметрам линий напряжением 0,38 кВ.

1.2. В настоящем разделе приняты понятия и определения, соответствующие главе 1.1 ПУЭ (седьмое издание).

Для обозначения обязательности выполнения требований настоящих Рекомендаций применяются слова «должен», «следует» и «необходимо».

1.3. Проекты разрабатываются согласно ГОСТ 21.101-97 «Основные требования к проектной и рабочей документации», а также требований Свода правил СП11-101-95, СНиП 11-01-95, РДС 11-201-95 и «Справочника базовых цен на проектные работы для строительства».

1.4. Проектирование ВЛИ до 1 кВ следует осуществлять на основе материалов, подготовленных в процессе инженерных изысканий, выполняемых согласно требованиям «Руководства по изысканиям трасс и площадок для проектирования электросетевых объектов напряжением 0,4...20 кВ», разработанного ОАО «РОСЭП».

1.5. В проектах должно предусматриваться применение сертифицированного электрооборудования (Сертификат соответствия), типовых строительных конструкций и изделий, отвечающих требованиям безопасности при строительстве и эксплуатации, а также экологическим условиям (Сертификат безопасности).

1.6. Количество типоразмеров оборудования, строительных конструкций и изделий применяемых в одном проекте, определяются параметрами надежности, величиной затрат на строительство и эксплуатацию.

1.7. Технические параметры ВЛИ до 1 кВ рекомендуется выбирать из условия минимальных затрат на их обслуживание за весь период эксплуатации. Выбор варианта сети осуществляется на основании сравнительных технико-экономических расчетов с использованием критерия индекса доходности в соответствии с «Методическими рекомендациями по оценке эффективности инвестиционных проектов и их отбору для финансирования», в том числе из условия минимума затрат за полный срок службы сетевого объекта.

1.8. Электрические нагрузки следует определять согласно «Методическим указаниям по расчету электрических нагрузок в сетях 0,4...110 кВ сельскохозяйственного назначения» и раздела 2 (изменения и дополнения) РД 34.20.185-94.

1.9. Распределение потерь напряжения на элементах сети производится на основании расчетов, исходя из допустимого отклонения напряжения у приемников потребителя (п. 5.2 ГОСТ 13109-97) и уровней напряжения на шинах центра питания.

Для предварительного выбора сечений проводов или при отсутствии исходных данных для расчета отклонения напряжения у приемников потери напряжения в линиях 0,38 кВ (от ТП до вводов в здания) рекомендуется прини-
мать исходя из средних значений предельных потерь напряжения в нормальном режиме:

- 4 % - крупные общественные здания и учреждения;
- 4 % - питание сельскохозяйственных комплексов;
- 6 % - малоэтажные и односекционные здания;
- 6,5 % - питание производственных потребителей.

1.10. Расчетные механические нагрузки для расчета конструкций ВЛИ до 1 кВ следует определять согласно главе 2.4 ПУЭ. Конструкции сетевых объектов должны обеспечивать заданные физико-механические и электротехнические параметры в течение всего срока службы, который должен быть не менее 40 лет.

1.11. Питание коммунально-бытовых потребителей от трансформаторов мощностью до 160 кВ·А следует осуществлять со схемой обмоток «треугольник-звездажка» или «звезд-зигзаг» с выведенной нейтралью обмотки 0,4 кВ. Применение трансформаторов с указанными схемами соединения обмоток повышает качество электроэнергии и надежности электроснабжения потребителей.

1.12. При разработке проектной документации на реконструкцию воздушных сетей 0,4 кВ с заменой неизолированных проводов на СИП следует рассчитывать предельную длину ВЛИ в зависимости от применяемой защиты (автоматы или предохранители).

1.13. Определение РКУ, интенсивности грозовой деятельности и пляски проводов для расчета ВЛИ производятся в процессе инженерных изысканий по картам климатического районирования с уточнением по региональным картам и материалам многолетних наблюдений гидрометеорологических станций (постов) в зоне трассы проектируемой ВЛ.

1.14. Проекты сетевых объектов, не реализованные в течение 3 лет после намеченного срока реализации, не могут служить основанием для строительства и подлежат пересмотру.

2. Общие рекомендации по проектированию ВЛИ до 1 кВ

2.1. Конструктивное исполнение ВЛИ определяет Заказчик совместно с проектной организацией, что должно быть отражено в задании на проектирование и технических условиях.

2.2. При проектировании ВЛ с совместной подвеской на опорах линий электропередачи 0,38 кВ и линий проводного вещания напряжением до 360 В следует руководствоваться ПУЭ, «Правилами использования ВЛ электропередачи 0,38 кВ для подвески проводов проводного вещания до 360 В» - РД 34.20.515-91 и Нормами технологического проектирования.
2.3. На ВЛ должны быть выполнены заземляющие устройства, предназначенные для повторного заземления нулевого провода (несущего нулевого провода ВЛИ), защиты от атмосферных перенапряжений, заземления электрооборудования, установленного на опорах ВЛ, заземления разрядников и ОПН. Защита от перенапряжений и заземление ВЛ должны выполняться согласно гл. 2.4 ПУЭ и ПУ ВЛИ до 1 кВ.

2.4. ВЛИ выполняются трехфазным проводом одного сечения по всей длине линии. При этом сечение магистральных проводов должно быть не менее 50 мм². При проектировании электроснабжения одного или группы приемников небольшой мощности, допускается сечение провода выбирать по электриическим нагрузкам конкретного объекта и с учетом минимальных сечений, приведенных в гл. 2.4 ПУЭ.

2.5. Выбор СИП должен быть проверен:

- на допустимые длительные токовые нагрузки по условию нагрева в нормальном и послеаварийном режиме (значения токов следует принимать по нормативно-технической документации конкретного исполнения СИП);
- термическую стойкость СИП при токах КЗ;
- допустимые отклонения напряжения у потребителей;
- обеспечение надежного срабатывания плавких предохранителей или автоматических выключателей при КЗ и перегрузках;
- пуск асинхронных электродвигателей с короткозамкнутым ротором.

2.6. На ВЛИ допускается применение деревянных и железобетонных опор. Применяемые опоры должны соответствовать требованиям гл. 2.4 ПУЭ. Расчетный изгибающий момент опор на уровне земли должен быть не менее 30 кН·м. На всех типах опор должна быть предусмотрена возможность подвески не менее 2-х цепей ВЛ, подвески проводов (кабелей) линий связи и линий проводного вещания (ПВ).

2.7. Арматура для подвески провода должна соответствовать ГОСТ или техническим условиям, утвержденным в установленном порядке. Защита линейной арматуры от коррозии должна осуществляться по техническим требованиям ГОСТ Р51177-98 «Арматура линейная. Общие технические условия». В местах, где наблюдается разрушение арматуры ВЛИ от коррозии, следует применять арматуру в стойком от коррозии исполнении.

2.8. Проектирование ВЛИ 0,38 кВ выполняется в соответствии с заданием на проектирование, выдаваемым Заказчиком на разработку проектной документации, а также с техническими условиями на присоединение к электрическим сетям 380/220 В.
2.9. При проектировании ВЛИ следует прокладывать, как правило, по двум сторонам улиц. Допускается их прокладка по одной стороне улицы с учетом исключения помех движению транспорта и пешеходов, а также удобства выполнения ответвлений от магистрали ВЛИ к вводам в здания и сокращения числа пересечений ВЛИ с инженерными сооружениями.

2.10. Длина пролета ответвления от магистрали ВЛИ к вводам в здания должна определяться расчетом в зависимости от прочности опоры, на которой выполняется ответвление; габаритов подвески проводов ответвления на опоре и на вводе, количества и сечения жил СИП ответвления, а также РКУ (гололедно-ветровых нагрузок) района, в котором осуществляется строительство ВЛИ.

2.11. При проектировании ВЛИ 0,38 кВ с совместной подвеской на общих опорах с линией проводного вещания напряжением до 380 В следует руководствоваться ПУ ВЛИ до 1 кВ и ПУЭ.

2.12. На участках параллельного следования ВЛИ 0,38 кВ с ВЛ 10 кВ следует рассматривать целесообразность применения общих опор для совместной подвески на них проводов этих линий.

2.13. Кабельные вставки во ВЛИ следует выполнять в соответствии с требованиями ПУЭ и ПУ ВЛИ до 1 кВ. Марка кабеля выбирается в соответствии с «Единными техническими указаниями по выбору и применению электрических кабелей» 1 часть – кабели силовые. Кабельные вставки по их концам, отходящие от ТП 10/0,4 кВ кабельные линии с одного конца при переходе их во ВЛИ должны быть защищены от грозовых перенапряжений вентильными разрядниками, присоединяемыми к проводам ВЛИ. Вентильные разрядники и ОПН следует устанавливать в случаях, указанных в ПУЭ и ПУ ВЛИ до 1 кВ.

2.14. Заземление вентильных разрядников или ОПН должно осуществляться путем их присоединения отдельным самостоятельным заземляющим спуском (независимо от материала опор ВЛИ) к заземлителю (контрлу заземления).

2.15. Проводимость жил нулевого провода СИП, питающего преимущественно (более 50 % по мощности) однофазные приемники, а также приемники I и II категории должна быть не менее проводимости жил фазного провода. Проводимость нулевого провода СИП ВЛИ должна быть больше проводимости фазного провода, если это требуется для обеспечения допустимых отклонений напряжения у ламп уличного освещения, а также при невозможности обеспечения другими средствами необходимой селективности срабатывания защиты ВЛИ от однофазного КЗ.

2.16. Для соблюдения нормируемых ПУЭ и ПУ ВЛИ до 1 кВ расстояний СИП ответвлений от магистрали ВЛИ к вводам в существующие жилые здания до проезжей части улиц, тротуаров, пешеходных дорожек и поверхности земли, а также от проводов ввода до поверхности земли необходимо предусматривать специальные конструкции.
3. Общие рекомендации по проектированию наружного освещения

3.1. Воздушные сети наружного освещения рекомендуется выполнять с использованием самонесущих изолированных проводов. Проектирование наружного освещения следует выполнять согласно гл. 6.1, 6.3, 6.5 ПУЭ и СН 541-82.

3.2. Допустимые отклонения напряжения у осветительных приборов должны соответствовать требованиям ГОСТ 13109.

3.3. В сетях наружного освещения, питающих осветительные приборы с разрядными лампами, в однофазных цепях сечение нулевого рабочего проводника должно быть равным фазному.

В трехфазных сетях при одновременном отключении всех фазных проводов линии сечение нулевого рабочих проводников должно выбираться:

- для участков сети, по которым протекает ток от ламп с компенсированными пускорегулирующими аппаратами, равным фазному независимо от сечения;
- для участков сети, по которым протекает ток от ламп с некомпенсированными пускорегулирующими аппаратами, равным фазному при сечении фазных проводников равным 25 м² для алюминиевых проводов и не менее 50 % сечения фазных проводников при больших сечениях, но не менее 25 м² для алюминиевых проводов.

3.4. Коэффициент спроса при расчете сети наружного освещения следует принимать равным 1,0.

3.5. На линиях наружного освещения, имеющих более 20 светильников на фазу, ответвления к каждому светильнику должны защищаться индивидуальными предохранителями.

3.6. Уличное освещение необходимо выполнять отдельным проводом СИП на опорах ВЛ 0,38 кВ. Допускается выполнение уличного освещения на опорах ВЛЗ 10 кВ совместно с ВЛИ до 1 кВ, при этом светильники уличного освещения должны располагаться ниже проводов ВЛЗ 10 кВ на удлиненном кронштейне.

3.7. Сети наружного освещения городов выполняются 3-фазными с глухозаземленной нейтралью. Применение СИП с неизолированной нейтралью (типа СИП-2 или финского производства типа АМКА) в условиях больших городов и районах с высокой химической агрессивностью внешней среды, вызывающей интенсивную коррозию неизолированного нулевого провода, не рекомендуется.

3.8. Распределительные линии наружного освещения дворовых территорий, как правило, имеют небольшую протяженность (до 300 м) и питают ограниченное число маломощных светильников. Для таких линий в ряде случаев
оправдано использование жгутов из несущих изолированных фазных и нулевого рабочего проводов с сечением жил 16 и 25 мм².

3.9. Ответвления от распределительных линий к светильникам выполняются по 3-проводной схеме. В цепи фазного зарядного провода необходима установка предохранителя или автомата индивидуальной защиты. Следует также предусматривать защитное заземление каждой опоры и кронштейна для крепления светильника.

Например, подключение установки освещения с двумя светильниками для линии с совмещенным и рабочим и защитным нулевыми проводниками должно выполняться по схеме:

```
   L1   L2   L3  PEN
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
   |     |    |    |
нение ответственных прокалывающих зажимов в сетях 0,38 кВ обеспечивают простоту и безопасность монтажа ответвлений от магистрали СИП, возможность работы под напряжением.

В настоящее время на Российском рынке представлены многие зарубежные фирмы, производящие высокотехнологичную, надежную линейную арматуру для СИП («ENSTO», «NILED», «TYCO» и др.). Изделия Отделения Энергетики «Тайко Электроникс» известны под торговыми марками «AMP», «Raychem», «Simel».

ЗАО «ЗЭТО» г. Великие Луки Псковской области (ОАО «ХК ЭЛВО») освоило производство арматуры для СИП. Линейная арматура сертифицирована органом по сертификации электротехнического и энергетического оборудования - ОАО «Фирма «ОРГЭС».

ООО «НИЛЕД» - филиал французской фирмы «NILED» в России в I квартале 2003 г. приступило к сборке линейной арматуры для СИП на Подольском заводе электромонтажных изделий (ПЗЭМИ).

Французская фирма NILED производит линейную арматуру для СИП 50 лет, которая эксплуатируется более чем в 30 странах с различными климатическими условиями.

В России линейная арматура фирмы NILED успешно применяется при строительстве ВЛ 0,38 кВ с применением СИП отечественного и зарубежного производства. Продукция NILED сертифицирована специально для России «Фирмой «ОРГЭС», подвергнута систематическим испытаниям, в том числе на монтаж и эксплуатацию при низких температурах. Также «Фирма «ОРГЭС» провела необходимые испытания на совместимость линейной арматуры NILED с СИП отечественного и зарубежного производства.

Вся арматура фирмы НИЛЕД имеет расчетный срок службы не менее 40 лет. Фирма НИЛЕД производит зажимы анкерные/натяжные для несущего изолированного и неизолированного нулевого провода СИП. Анкерные зажимы имеют широкий диапазон для проводов сечений 6…95 мм², прессуемые зажимы МЖРТ для сечений 6…150 мм².

В материале представлены основные типы арматуры фирмы ООО «НИЛЕД» их характеристики, особенности и применение на ВЛ 0,38 кВ. Для предварительных расчетов потребности в линейной арматуре для подвески СИП на магистралях и ответвлениях (на примере арматуры фирмы ООО «НИЛЕД») приведены в таблицах.

Прайс-листы на арматuru фирмы ООО «НИЛЕД» приведены в приложении.
СИСТЕМА СЕРТИФИКАЦИИ ГОСТ Р
ГОССТАНДАРТ РОССИИ

СЕРТИФИКАТ СООТВЕТСТВИЯ

№ POCC FR.MX02.B00105
Срок действия с 15.11.2001 по 15.11.2004
№ 4695514 *

ОРГАН ПО СЕРТИФИКАЦИИ
№ POCC RU.0001.11MX02,
ОРГАН ПО СЕРТИФИКАЦИИ ЭЛЕКТРОТЕХНИЧЕСКОГО И
ЭНЕРГЕТИЧЕСКОГО ОБОРУДОВАНИЯ ОАО «ФИРМА ОРГРЭС»,
105023, Москва, Семеновский пер., 15, тел. 369-79-14, факс 360 86 40

ПРОДУКЦИЯ
Линейная арматура и комплектующие типоисполнений (см. приложение) для
самовсасывающих изолированных проводов типа СИП-2А (ГУ 16.K71-268-88) и
"Горсада" (стандарт Франции NFC 33 209),
Стандарты Франции NF-C 33020, NF-C 33021, NF-C 33040, NF-C 33041,
серийный выпуск.

СООТВЕТСТВУЕТ ТРЕБОВАНИЯМ НОРМАТИВНЫХ ДОКУМЕНТОВ
ГОСТ Р 51177-98 (п.п. 3.1.1, 3.1.5, 3.1.6, 3.7.1, 3.10, 3.11.1,
3.11.2, 3.11.3, 3.11.5, 3.12.2), ГОСТ 13276- 79 (п.п. 1.7.1,
1.7.2)

ИЗГОТОВИТЕЛЬ
Фирма «NILED» (Франция),
38, QUAI DE L'OISE – В.P.8- 60870 RIEUX - FRANCE

СЕРТИФИКАТ ВЫДАН
Фирме «NILED» (Франция),
38, QUAI DE L'OISE – В.P.8- 60870 RIEUX - FRANCE,
телефон: 333 4470 71 11, факс 333 4472 96 65
НА ОСНОВАНИИ

Протокола сертификационных испытаний № 53.106.01/194 от 12 ноября 2001 г.,
выданного Испытательным центром ОАО «Фирма ОРГРЭС»;
Регистрационный № POCC RU.0001.21MX08 от 4 июля 2001 г.

ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ
Схема сертификации 3.

Руководитель органа
Эксперт

Документ имеет юридическую силу на всей территории Российской Федерации
СИСТЕМА СЕРТИФИКАЦИИ ГОСТ Р
ГОССТАНДАРТ РОССИИ

№ 0579933

ПРИЛОЖЕНИЕ

К сертификату соответствия № ROCC FR.MX02.B00105

Перечень конкретной продукции, на которую распространяется действие сертификата соответствия

<table>
<thead>
<tr>
<th>Код ОК 035 (ОКП)</th>
<th>Наименование и обозначение продукции, ее изготовитель</th>
<th>Обозначение документации, по которой выпускается продукция</th>
</tr>
</thead>
</table>

Руководитель органа
Эксперт

А.Г. Ахкимов
А.Н. Жуков
Потребность в линейной арматуре для подвески СИП-2А (3х70+70) на магистрали ВЛИ и подвески СИП-2А (2х16) на вводах в расчете на 1км *

<table>
<thead>
<tr>
<th>№ п/п</th>
<th>Наименование арматуры</th>
<th>Марка</th>
<th>S (мм²)</th>
<th>Количество</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Анкерный зажим</td>
<td>DN 123</td>
<td>2х16-4х25</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>Ответственный зажим для фазного провода</td>
<td>P 6</td>
<td>6-150/1.5-6</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>Ответственный зажим для фазного провода</td>
<td>P 645</td>
<td>6-150/6-25</td>
<td>50</td>
</tr>
<tr>
<td>4</td>
<td>Ответственный зажим для нулевого провода</td>
<td>P 95</td>
<td>16-150/16-95</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>Стяжной хомут</td>
<td>E 778</td>
<td>D 10-45 мм</td>
<td>200</td>
</tr>
<tr>
<td>6</td>
<td>Анкерный зажим</td>
<td>PAC 1500</td>
<td>50-70</td>
<td>25</td>
</tr>
<tr>
<td>7</td>
<td>Соединительный зажим для фазного провода</td>
<td>MJPT 70</td>
<td>70</td>
<td>9</td>
</tr>
<tr>
<td>8</td>
<td>Соединительный зажим для нейтрали</td>
<td>MJPT 70 N</td>
<td>95</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>Ответственный зажим для магистральных проводов</td>
<td>P 95</td>
<td>16-150/16-95</td>
<td>15</td>
</tr>
<tr>
<td>10</td>
<td>Комплект промежуточной подвески</td>
<td>ES 1500 E</td>
<td>16-95</td>
<td>18</td>
</tr>
<tr>
<td>11</td>
<td>Ответственный зажим для нулевого и ответвительного провода</td>
<td>P645</td>
<td>6-150/6-25</td>
<td>50</td>
</tr>
<tr>
<td>12</td>
<td>Колпачки</td>
<td>CE 25-150</td>
<td>25-150</td>
<td>18</td>
</tr>
</tbody>
</table>

* В таблице принято: на магистрали используется 10 анкерных опор, 5 ответвительных опор и 13 промежуточных опор; число ответвлений от магистрали к вводам в здания – 50.

Потребность в линейной арматуре для подвески СИП-2 (3х70+95) на магистрали ВЛИ и подвески СИП-2А (2х16) на вводах в расчете на 1км *

<table>
<thead>
<tr>
<th>№ п/п</th>
<th>Наименование арматуры</th>
<th>Марка</th>
<th>S (мм³)</th>
<th>Количество</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Анкерный зажим</td>
<td>DN 123</td>
<td>2х16-4х25</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>Ответственный зажим для фазного провода</td>
<td>P 6</td>
<td>6-150/1.5-6</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>Ответственный зажим для фазного провода</td>
<td>P 645</td>
<td>6-150/6-25</td>
<td>50</td>
</tr>
<tr>
<td>4</td>
<td>Ответственный зажим для нулевого провода</td>
<td>CD 153N</td>
<td>25-95/25-95</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>Предохранительный футляр для CD 153 N</td>
<td>BI 153</td>
<td>25-95</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>Стяжной хомут</td>
<td>E 778</td>
<td>D 10-45 мм</td>
<td>200</td>
</tr>
<tr>
<td>7</td>
<td>Анкерный зажим</td>
<td>PAC N 95</td>
<td>25-95</td>
<td>25</td>
</tr>
<tr>
<td>8</td>
<td>Соединительный зажим для фазного провода</td>
<td>MJPT 70</td>
<td>70</td>
<td>9</td>
</tr>
<tr>
<td>9</td>
<td>Соединительный зажим для нейтрали</td>
<td>MJPT 95 N</td>
<td>95</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>Ответственный зажим для магистральных проводов</td>
<td>P 95</td>
<td>16-150/16-95</td>
<td>15</td>
</tr>
<tr>
<td>11</td>
<td>Поддерживающий зажим</td>
<td>PS 1500 N/T</td>
<td>25-95</td>
<td>18</td>
</tr>
<tr>
<td>12</td>
<td>Ответственный зажим для нулевого и ответвительного провода</td>
<td>P645</td>
<td>6-150/6-25</td>
<td>50</td>
</tr>
<tr>
<td>13</td>
<td>Колпачки</td>
<td>CE 25-150</td>
<td>25-150</td>
<td>18</td>
</tr>
</tbody>
</table>

* В таблице принято: на магистрали используется 10 анкерных опор, 5 ответвительных опор и 13 промежуточных опор; число ответвлений от магистрали к вводам в здания – 50.
Перечень арматуры НИЛЕД для ввода в здание с самонесущими изолированными проводами СИП-2А (2x16, 4x16, 2x25, 4x25) от ВЛИ

<table>
<thead>
<tr>
<th>№ п/п</th>
<th>Наименование арматуры</th>
<th>Марка</th>
<th>S(мм²)</th>
<th>Количество арматуры в расчете на 1 ввод, шт.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2-х пр.</td>
</tr>
<tr>
<td>1</td>
<td>Анкерный зажим</td>
<td>DN 123</td>
<td>2x16-4x25</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Ответственный зажим для фазного провода</td>
<td>P 6</td>
<td>6-150/1,5-6</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>Ответственный зажим для фазного провода</td>
<td>P 645</td>
<td>6-150/6-25</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>Ответственный зажим для нулевого провода</td>
<td>P645</td>
<td>6-150/6-25</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>Колпачки</td>
<td>CE 6-35</td>
<td>25-150</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>Хомуты</td>
<td>E 778</td>
<td>D 10-45 мм</td>
<td>4</td>
</tr>
</tbody>
</table>

Перечень арматуры НИЛЕД для ввода в здание с самонесущими изолированными проводами марки СИП-2А (2x16, 4x16, 2x25, 4x25) от воздушной линии с неизолированными проводами

<table>
<thead>
<tr>
<th>№ п/п</th>
<th>Наименование арматуры</th>
<th>Марка</th>
<th>S(мм²)</th>
<th>Количество при введе, шт.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2-х вр.</td>
</tr>
<tr>
<td>1</td>
<td>Анкерный зажим</td>
<td>DN 123</td>
<td>2x16-4x25</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Ответственный зажим для фазного провода</td>
<td>P 6</td>
<td>6-150/1,5-6</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>Ответственный зажим для фазного провода</td>
<td>N 640*</td>
<td>6-120/6-25</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>Ответственный зажим для нулевого провода</td>
<td>N 640</td>
<td>6-120/6-25</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>Колпачки</td>
<td>CE 6-35</td>
<td>6-35</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>Хомуты</td>
<td>E 778</td>
<td>D 10-45 мм</td>
<td>4</td>
</tr>
</tbody>
</table>


По вопросу заказа следует обращаться по адресу:
ООО «НИЛЕД»
142108, Московская обл., г. Подольск, ул. Раевского, д.3

tel./факс: (095)996-63-45 E-mail: igor@niled.podolsk.ru
tel.: (0967)53-24-99 Internet: www.niled.podolsk.ru
из Москвы тел.: (827)532499
<p>| Линейная арматура фирмы НИЛЕД для СИП-2, СИП-2А, СИП-4 и ее аналоги фирм ENSTO и TYSO |
|---------------------------------|---------------------------------|----------|----------|
| <strong>Кронштейны</strong> |
| CS 10.3 анкерный (2000 даH) | S (мм²)  |
| | 2x16/4x25  |
| | 50-70  |
| CS 1500Е пром-ный (1200 даH) | S (мм²)  |
| | SOT 29, SOT 39  |
| <strong>Ответственный анкерный зажим</strong> |
| DN 123 | 2x16/4x25  |
| | SOT 76/29/39  |
| | CA1500, CA1500/2000  |
| <strong>Анкерные зажимы</strong> |
| DN 35 (1000 даH) | S (мм²)  |
| | 2x16/4x25  |
| | SOT 25, SO 158.1  |
| | PA 25x100  |
| PA 1500 (1500 даH) | S (мм²)  |
| | 2x16/4x25  |
| | SO 127.50  |
| | PA 1500  |
| PAC 1500 (1500 даH) | S (мм²)  |
| | 2x16/4x25  |
| | SO 127.50  |
| PA 2000 (2000 даH) | S (мм²)  |
| | 2x16/4x25  |
| | SO 141, SO 28  |
| | PA 95-2000  |
| PAC 95N | S (мм²)  |
| | 2x16/4x25  |
| | SO 141, SO 28  |
| | PA 95-2000  |
| PA 2200 (2000 даH) | S (мм²)  |
| | 2x16/4x25  |
| | SO 141, SO 28  |
| | PA 95-2000  |
| PAN25 | S (мм²)  |
| | 2x16/4x25  |
| | SOT 76  |
| | PA 1500  |
| PA 470/95 | S (мм²)  |
| | 2x16/4x25  |
| | SO 118.1201  |
| | PA 1500  |
| RPA 425/50 | S (мм²)  |
| | 2x16/4x25  |
| | SO 118.1201  |
| | PA 1500  |
| <strong>Комплект промежуточной подвески</strong> |
| ES 1500 E | S (мм²)  |
| | 2x16/4x25  |
| | SOT 76  |
| | ES 1500  |
| ES 1500 E | S (мм²)  |
| | 2x16/4x25  |
| | SOT 76  |
| | ES 1500  |
| <strong>Поддерживающий зажим</strong> |
| PS 1500 N/T | S (мм²)  |
| | 2x16/4x25  |
| | SO 118.1201  |
| | PA 1500  |
| PS 1500+LM-E (1800 даH) | S (мм²)  |
| | 2x16/4x25  |
| | SO 118.1201  |
| | PA 1500  |
| PS 216/25 | S (мм²)  |
| | 2x16/4x25  |
| | SO 118.1201  |
| | PA 1500  |
| PS 216/25 | S (мм²)  |
| | 2x16/4x25  |
| | SO 118.1201  |
| | PA 1500  |
| PS 425/50 | S (мм²)  |
| | 2x16/4x25  |
| | SO 118.1201  |
| | PA 1500  |
| PS 470/95 | S (мм²)  |
| | 2x16/4x25  |
| | SO 118.1201  |
| | PA 1500  |
| <strong>Влагозащищенные ответвительные зажимы</strong> |
| P 6 | S (мм²)  |
| | 6-150/1.5-6  |
| | SLI1W 11.1  |
| | KZ3-95  |
| P 645 | S (мм²)  |
| | 6-150/1.5-6  |
| | SLI1W 11.1  |
| | KZ3-95  |
| P 645 | S (мм²)  |
| | 6-150/1.5-6  |
| | SLI1W 11.1  |
| | KZ3-95  |
| N 640 | S (мм²)  |
| | 6-150/1.5-6  |
| | SLI1W 11.1  |
| | KZ3-95  |
| N 640 | S (мм²)  |
| | 6-150/1.5-6  |
| | SLI1W 11.1  |
| | KZ3-95  |
| N 95 | S (мм²)  |
| | 6-150/1.5-6  |
| | SLI1W 11.1  |
| | KZ3-95  |
| N 95 | S (мм²)  |
| | 6-150/1.5-6  |
| | SLI1W 11.1  |
| | KZ3-95  |
| N 95 | S (мм²)  |
| | 6-150/1.5-6  |
| | SLI1W 11.1  |
| | KZ3-95  |
| P 71 | S (мм²)  |
| | 35-95/2.5-54  |
| | SLIW 15.1/SL 24  |
| | KZ3-95  |
| P 72 (два ответления) | S (мм²)  |
| | 35-95/2.5-54  |
| | SLI1W 11.1  |
| | KZ3-95  |
| PR 70 | S (мм²)  |
| | 35-95/2.5-54  |
| | SLI1W 11.1  |
| | KZ3-95  |
| CD 153N | S (мм²)  |
| | 25-95/25-95  |
| | SL 4.2, SL 4.25  |
| | KZ3-95  |
| <strong>Соединительные зажимы</strong> |
| MJPT 35 | S (мм²)  |
| | 35  |
| | SJ 8.35  |
| | MJPT 35  |
| MJPT 50 | S (мм²)  |
| | 50  |
| | SJ 8.35  |
| | MJPT 50  |
| MJPT 70 | S (мм²)  |
| | 70  |
| | SJ 8.35  |
| | MJPT 70  |
| MJPT 95 | S (мм²)  |
| | 95  |
| | SJ 8.35  |
| | MJPT 95  |
| MJPT 150 | S (мм²)  |
| | 150  |
| | SJ 8.35  |
| | MJPT 95  |
| MJPT 35 N | S (мм²)  |
| | 35  |
| | SJ 8.35  |
| | MJPT 95  |</p>
<table>
<thead>
<tr>
<th>Линейная арматура фирмы НИЛЕД</th>
<th>S (мм(^2)) маг./отв.</th>
<th>Марка арматуры</th>
</tr>
</thead>
<tbody>
<tr>
<td>MJPT 54 N</td>
<td>50-54</td>
<td>ENSTO MJPT 54</td>
</tr>
<tr>
<td>MJPT 70 N</td>
<td>70</td>
<td>MJPT 70 N</td>
</tr>
<tr>
<td>MJPT 95 N</td>
<td>95</td>
<td>MJPT 95 N</td>
</tr>
<tr>
<td>MJPB 6-16</td>
<td>6-16</td>
<td>MJPB 06-16</td>
</tr>
<tr>
<td>MJPB 6-25</td>
<td>6-25</td>
<td>MJPB 6-25</td>
</tr>
<tr>
<td>MJPB 16</td>
<td>16</td>
<td>MJPB 16</td>
</tr>
<tr>
<td>MJPB 25</td>
<td>25</td>
<td>SJ 8.25</td>
</tr>
<tr>
<td>MJPB 16-25</td>
<td>16-25</td>
<td>MJPB 16-25</td>
</tr>
<tr>
<td>Наконечники изолированные</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPTAU 16</td>
<td>16</td>
<td>SAL 1.2/1.27</td>
</tr>
<tr>
<td>CPTAU 25</td>
<td>25</td>
<td>CPTAU 16 D 16</td>
</tr>
<tr>
<td>CPTAU 35</td>
<td>35</td>
<td>CPTAU 25 D 16</td>
</tr>
<tr>
<td>CPTAU 50</td>
<td>50</td>
<td>CPTAU 35</td>
</tr>
<tr>
<td>CPTAU 54</td>
<td>54</td>
<td>CPTAU 50</td>
</tr>
<tr>
<td>CPTAU 70</td>
<td>70</td>
<td>CPTAU 54</td>
</tr>
<tr>
<td>CPTAU 95</td>
<td>95</td>
<td>CPTAU 70</td>
</tr>
<tr>
<td>Фасадные крепления</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SF 20</td>
<td>D 18-55 мм</td>
<td>SO 70.13/90.1/71</td>
</tr>
<tr>
<td>SF 50</td>
<td>D 18-55 мм</td>
<td>SO 70.13/90.1/71</td>
</tr>
<tr>
<td>Стяжные хомуты</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 778</td>
<td>D 10-45 мм</td>
<td>PER 15</td>
</tr>
<tr>
<td>E 260</td>
<td>D 25-65 мм</td>
<td>PER 15</td>
</tr>
<tr>
<td>Металлическая лента</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F 207</td>
<td>50 м</td>
<td>COT 37</td>
</tr>
<tr>
<td>Скрепа соединительная</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NC 20</td>
<td>100 шт.</td>
<td>COT 36</td>
</tr>
<tr>
<td>Колпачки</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE 6-35</td>
<td>6-35</td>
<td>PK 99.2595</td>
</tr>
<tr>
<td>CE 25-150</td>
<td>25-150</td>
<td>CECT 16-150</td>
</tr>
<tr>
<td>Инструмент натяжения ленты</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CVF</td>
<td></td>
<td>CT 42</td>
</tr>
<tr>
<td>Чулок для нейтрали</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CM 1750</td>
<td>35-70 мм(^2)</td>
<td>CT 103.35, CT 103.50</td>
</tr>
<tr>
<td>Разделитель фаз</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 894</td>
<td></td>
<td>ST 31</td>
</tr>
<tr>
<td>Ролик раскаточный</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT 2</td>
<td></td>
<td>ST 26.22</td>
</tr>
<tr>
<td>Гидравлический пресс</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HT 50</td>
<td></td>
<td>CT 120</td>
</tr>
<tr>
<td>Матрица</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 140/173</td>
<td></td>
<td>E 173</td>
</tr>
<tr>
<td>E 215</td>
<td></td>
<td>E 215</td>
</tr>
<tr>
<td>Ручная лебедка</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PT 500</td>
<td></td>
<td>CT 116.3</td>
</tr>
<tr>
<td>Вертлюг</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-B</td>
<td></td>
<td>CT 104</td>
</tr>
</tbody>
</table>
Линейная арматура фирмы НИЛЭД для СИП-2, СИП-2А и ее аналоги фирмы ЗАО «ЗЭТО» (г. Великие Луки)

<table>
<thead>
<tr>
<th>Линейная арматура фирмы НИЛЭД</th>
<th>S (㎜²)mag./отв.</th>
<th>Марка арматуры</th>
<th>ЗАО «ЗЭТО» для СИП 2</th>
<th>арматуры, выпуск которой прекращен</th>
</tr>
</thead>
<tbody>
<tr>
<td>Кронштейны: анкерные, промежуточные</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS 10.3 анкерный (2000 даН)</td>
<td></td>
<td>КБ2</td>
<td></td>
<td>КМ-1-1*</td>
</tr>
<tr>
<td>Ответственный анкерный зажим</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DN 123 (СИП 2А)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAN 25 (СИП 2)</td>
<td>16-50</td>
<td>НЦ 25, НЦ 35; НЦ 50, НР23-50</td>
<td></td>
<td>К-НО-1*</td>
</tr>
<tr>
<td>Анкерные зажимы из алюминиевого сплава</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DN 35 (СИП 2А)</td>
<td>25-35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PA 1500 (СИП 2А)</td>
<td>50-70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAC 1500 (СИП 2А)</td>
<td>50-70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PA 2200 (СИП 2А)</td>
<td>80-95</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAC N 95 (СИП 2)</td>
<td>25-95</td>
<td>НР 25-95</td>
<td></td>
<td>K-НМ-1*</td>
</tr>
<tr>
<td>Комплект промежуточной подвески</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ES 1500.Е</td>
<td>16-95</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Поддерживающий зажим</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PS 1500+LM-Е</td>
<td>16-95</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PS 1500 N/T (СИП 2)</td>
<td>25-95</td>
<td>ПН 1</td>
<td></td>
<td>K-ПМ-2*</td>
</tr>
<tr>
<td>Влагозащищенные ответвительные зажимы</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Р 6</td>
<td>16-150/1,5-6</td>
<td>ОК 4-1</td>
<td></td>
<td>К-ОФФ-1,* К-ОФН-1*</td>
</tr>
<tr>
<td>Р 95</td>
<td>16-150/16-95</td>
<td>ОК 1-2, ОН5-1, ОН6-2</td>
<td></td>
<td>К-ОФ-1*; К-СФ-1*</td>
</tr>
<tr>
<td>Р 645</td>
<td>6-150/6-25</td>
<td>ОИ 7-1</td>
<td></td>
<td>К-ОНИМ-1*</td>
</tr>
<tr>
<td>N 640</td>
<td>6-120/6-25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N 95</td>
<td>22-150/16-95</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PC 481</td>
<td>16-150</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Влагозащищенные ответвительные зажимы многогоразового использования</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Р 71</td>
<td>35-95/2,5-54</td>
<td>ОИ 7-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Р 72 (два ответвления)</td>
<td>35-95/2х2,5-54</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Р 21</td>
<td>16-70/16-70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PR 70</td>
<td>25-95/25-95</td>
<td>ОК 1-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD 153N, CD71 (СИП 2)</td>
<td>25-95/25-95</td>
<td>ОН 1-2, ОНЗ-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Соединительные зажимы</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MJPT 35</td>
<td>35</td>
<td>СФ 35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MJPT 50</td>
<td>50</td>
<td>СФ 50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MJPT 70</td>
<td>70</td>
<td>СФ 70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MJPT 95</td>
<td>95</td>
<td>СФ 95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MJPT 120</td>
<td>120</td>
<td>СФ 120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MJPT 150</td>
<td>150</td>
<td>СФ 150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MJPT 35 N нейтраль</td>
<td>35</td>
<td>СНА 35Н</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MJPT 54.6 N нейтраль</td>
<td>54</td>
<td>СНА 54Н</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MJPT 70 Н нейтраль</td>
<td>70</td>
<td>СНА 70Н</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MJPT 95 Н нейтраль</td>
<td>95</td>
<td>СНА 95Н</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MJPB 16</td>
<td>16</td>
<td>СФ 16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MJPB 25</td>
<td>25</td>
<td>СФ 25</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*- В связи с отсутствием данного типа арматуры на рынке для подвески СИП следует применять арматуру других фирм.
ЗАЖИМЫ ДЛЯ КРЕПЛЕНИЯ
ИЗОЛИРОВАННОГО НУЛЕВОГО ПРОВОДА СИП-2А

Анкерные зажимы предназначены для жесткого крепления на магистрали и ответвлениях от магистрали, а также на ответвлениях к вводам в здания и сооружения. Зажимы обеспечивают необходимое тяжение провода в анкерном пролете линии.

Зажим клиновой анкерный типа DN/PA/PAC

**Назначение:**

♦ Для крепления изолированного несущего нулевого провода (СИП-2А) на концевых, угловых, а также промежуточных опорах.

**Характеристика:**

♦ Корпус выполнен из алюминиевого сплава, обеспечивающего высокую надежность зажима и его устойчивость к механическим воздействиям.

♦ Клиновидная вставка выполнена из изоляционного материала для защиты нулевого провода двойной изоляцией.

♦ Тросик имеет термопластиковую накладку, защищающую его от износа при креплении на кронштейне (крюке).

♦ Зажимы рассчитаны на монтаж и эксплуатацию при низких температурах.

♦ Зажимы отличаются высокой прочностью, устойчивостью к коррозии, компактны.

♦ Установка зажимов производится без инструмента.

**Особенности:**

♦ Тросик зажима PA1500 и PA2200 выполнен из нержавеющей стали с шаровыми ограничивающими креплениями на обоих концах для удобства надежной фиксации.

♦ Тросик зажима PAC1500 выполнен из нержавеющей стали, зафиксирован в корпус зажима и снабжен крюком для подвешивания и блокировки на кронштейне без снижения механического тяжения.

♦ Монтаж и демонтаж зажима PAC1500 проще, чем PA1500 и PA2200 (его цена на 3 % больше).
<table>
<thead>
<tr>
<th>Марка</th>
<th>Сечение СИП, мм²</th>
<th>Диаметр, мм</th>
<th>Разрушающая нагрузка, даН</th>
<th>Длина корпуса, мм</th>
<th>Масса, г</th>
<th>Кол-во в упаковке, шт.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DN35</td>
<td>16-35</td>
<td>8-12</td>
<td>1000</td>
<td>110</td>
<td>360</td>
<td>50</td>
</tr>
<tr>
<td>PA1500</td>
<td>50-54,6-70</td>
<td>12-14</td>
<td>1500</td>
<td>110</td>
<td>460</td>
<td>50</td>
</tr>
<tr>
<td>PAC1500</td>
<td>50-54,6-70</td>
<td>12-14</td>
<td>1500</td>
<td>110</td>
<td>400</td>
<td>50</td>
</tr>
<tr>
<td>PA2000</td>
<td>50-54,6-70</td>
<td>12-14</td>
<td>2000</td>
<td>110</td>
<td>580</td>
<td>50</td>
</tr>
<tr>
<td>PA2200</td>
<td>80-95</td>
<td>14-18</td>
<td>2000</td>
<td>140</td>
<td>680</td>
<td>50</td>
</tr>
</tbody>
</table>

Анкерный фасадный кронштейн

Назначение:
♦ Для крепления анкерных зажимов.

Характеристика:
♦ Выполнен из алюминиевого сплава.
♦ Крепление производится с помощью болта VQ12.70 или штифтов с зачеканкой в отверстиях диаметром 16 мм (длина дюбелей CH12.80 60 мм).

Особенности:
♦ Применяется для анкерного крепления СИП от магистрали до стены здания и между зданиями (сооружениями).

<table>
<thead>
<tr>
<th>Наименование</th>
<th>Марка</th>
<th>Масса, г</th>
<th>Кол-во в упаковке, шт.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Кронштейн для крепления в трех точках</td>
<td>CT600</td>
<td>350</td>
<td>1</td>
</tr>
</tbody>
</table>

Анкерный кронштейн типа CS10.3

Назначение:
♦ Обеспечивает крепление одного или двух анкерных зажимов для магистральных СИП.

Характеристика:
♦ Кронштейн представляет собой моноблок из сплава алюминия с высокой механической прочностью.
♦ Обладает высокой устойчивостью к коррозии.
♦ Крепление осуществляется двумя болтами диаметром 14 и 16 мм или металлической лентой F207 (двух скреп NC20).

Особенности:
♦ Кронштейн может крепиться одним болтом.
♦ Разрушающая нагрузка — 2000 даН.

<table>
<thead>
<tr>
<th>Марка</th>
<th>Разрушающая нагрузка, даН</th>
<th>Масса, г</th>
<th>Кол-во в упаковке, шт.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS10.3</td>
<td>2000</td>
<td>300</td>
<td>100</td>
</tr>
</tbody>
</table>
Подвесные поддерживающие зажимы применяются для крепления СИП-2А на промежуточных опорах и обеспечивают габаритные размеры в пролетах.

Подвесной поддерживающий зажим типа PS1500+LM-E

Назначение:
♦ Используется для подвески СИП-2А на промежуточных опорах.

Характеристика:
♦ Зажим открывается со стороны кронштейна.
♦ Элементы зажима, контактирующие с несущим нулевым проводом, изготовлены из изоляционного материала во избежание механического повреждения оболочки.
♦ Обеспечивает подвижное соединение.
♦ Возможно применение на угловых опорах ВЛИ при углах до 90°. При этом необходимо учитывать максимальный радиус изгиба нулевого провода.

Особенности:
♦ Блокировка несущего нулевого провода производится без инструмента.

<table>
<thead>
<tr>
<th>Марка</th>
<th>Сечение СИП, мм²</th>
<th>Диаметр максимальный, мм</th>
<th>Разрушающая нагрузка, даН</th>
<th>Масса, г</th>
<th>Кол-во в упаковке, шт.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS1500+LM-E</td>
<td>16-95</td>
<td>18</td>
<td>&gt;1200</td>
<td>170</td>
<td>40</td>
</tr>
</tbody>
</table>

Комплект промежуточной подвески типа ES1500.E

Назначение:
♦ Используется для подвески СИП-2А на промежуточных опорах и обеспечивает габаритные размеры в пролетах.

Характеристика:
♦ Возможно применение на угловых опорах ВЛИ при углах до 90°. При этом необходимо учитывать максимальный радиус изгиба нулевого провода.

<table>
<thead>
<tr>
<th>Марка</th>
<th>Наименование</th>
<th>Сечение СИП, мм²</th>
<th>Диаметр, мм</th>
<th>Разрушающая нагрузка, даН</th>
<th>Масса, г</th>
<th>Кол-во в упаковке, шт.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ES1500.E</td>
<td>Комплект PS1500+LM-E</td>
<td>16-95</td>
<td>8-16</td>
<td>&gt;1200</td>
<td>650</td>
<td>20</td>
</tr>
</tbody>
</table>
ЗАЖИМЫ ДЛЯ КРЕПЛЕНИЯ НЕИЗОЛИРОВАННОГО НУЛЕВОГО ПРОВОДА СИП-2

Анкерный (натяжной) зажим PАС95N

Назначение:
♦ Анкерный зажим PАС95N применяется для СИП-2.

Характеристика:
♦ Корпус зажима выполнен из коррозионно-стойкого алюминиевого сплава.

Особенности:
♦ Установка зажима не требует применение динамического ключа, т.к. контроль над усилием затяжки болтов осуществляется срывной шестигранной головкой Ø 10 мм.

<table>
<thead>
<tr>
<th>Марка</th>
<th>Сечение СИП, мм²</th>
<th>Разрушающая нагрузка, даН</th>
<th>Масса, г</th>
<th>Кол-во в упаковке, шт.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PАС95N</td>
<td>25-95</td>
<td>1800</td>
<td>340</td>
<td>50</td>
</tr>
</tbody>
</table>

Анкерный (натяжной) зажим PАN25

Назначение:
♦ Анкерный зажим PАN25 применяется для СИП-2.

Характеристика:
♦ Корпус зажима выполнен из коррозионно-стойкого алюминиевого сплава.

Особенности:
♦ Несущий нулевой провод не требует обрезания, он помещается в зажим, находящийся в открытом положении.

<table>
<thead>
<tr>
<th>Марка</th>
<th>Сечение СИП, мм²</th>
<th>Разрушающая нагрузка, даН</th>
<th>Масса, г</th>
<th>Кол-во в упаковке, шт.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PАN25</td>
<td>25-50</td>
<td>700</td>
<td>160</td>
<td>50</td>
</tr>
</tbody>
</table>

Подвесной поддерживающий зажим типа PS1500N/T

Назначение:
♦ Используется для подвески СИП-2 на промежуточных опорах и вводах в здания.

Характеристика:
♦ Зажим открывается со стороны кронштейна.
♦ Элементы зажима, контактирующие с несущим нулевым проводом, изготовлены из изоляционного материала.
♦ Обеспечивает подвижное соединение.
♦ Возможно применение на угловых опорах ВЛИ при углах 90°, но необходимо учитывать максимальный радиус изгиба нулевого провода.

Особенности:
♦ Блокировка несущего нулевого провода производится без инструмента.

<table>
<thead>
<tr>
<th>Марка</th>
<th>Сечение СИП, мм²</th>
<th>Диаметр максимальный, мм</th>
<th>Разрушающая нагрузка, даН</th>
<th>Масса, г</th>
<th>Кол-во в упаковке, шт.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS1500N/T</td>
<td>16-95</td>
<td>14</td>
<td>&gt;1200</td>
<td>190</td>
<td>40</td>
</tr>
</tbody>
</table>
ЗАЖИМЫ ДЛЯ КРЕПЛЕНИЯ СИП-4 БЕЗ НЕСУЩЕГО НУЛЕВОГО ПРОВОДА

Анкерный (натяжной) зажим RPA

**Назначение:**
♦ Применяется для крепления СИП-4 без несущего нулевого провода.

**Характеристика:**
♦ Щеки выполнены из жесткой пластмассы, что обеспечивает закрепление и защиту проводов.
♦ Основные элементы конструкции и бугель выполнены из оцинкованной закаленной стали.

<table>
<thead>
<tr>
<th>Марка</th>
<th>Сечение СИП, мм²</th>
<th>Масса, г</th>
<th>Кол-во в упаковке, шт.</th>
</tr>
</thead>
<tbody>
<tr>
<td>RPA425/50</td>
<td>4x25-4x50</td>
<td>900</td>
<td>50</td>
</tr>
<tr>
<td>RPA470/95</td>
<td>4x70-4x95</td>
<td>4000</td>
<td>50</td>
</tr>
</tbody>
</table>

Поддерживающий зажим типа PS

**Назначение:**
♦ Используется для подвески СИП-4.

**Характеристика:**
♦ Зажим выполнен из закаленной стали со вставкой из термопластика, предохраняющей жгут проводов от механических повреждений.
♦ Металлические части зажима защищены от коррозии:
  - PS216/25 - оцинковкой.
  - PS425/50 и PS470/95 – цинко-кобальтовым покрытием.

<table>
<thead>
<tr>
<th>Марка</th>
<th>Сечение СИП, мм²</th>
<th>Диаметр жгута, мм</th>
<th>Масса, г</th>
<th>Кол-во в упаковке, шт.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS216/25</td>
<td>2x16-4x25</td>
<td>16</td>
<td>200</td>
<td>50</td>
</tr>
<tr>
<td>PS425/50</td>
<td>4x35-4x50-4x70</td>
<td>25</td>
<td>240</td>
<td>40</td>
</tr>
<tr>
<td>PS470/95</td>
<td>4x50-4x70-4x95</td>
<td>32</td>
<td>290</td>
<td>40</td>
</tr>
</tbody>
</table>
ЗАЖИМЫ ДЛЯ КРЕПЛЕНИЯ ПРОВОДОВ ВСЕХ СИСТЕМ
(СИП-2, СИП-2А, СИП-4)

Анкерные зажимы типа DN

**Назначение:**
✦ Зажим клиновой анкерный (натяжной) предназначен для ответвлений от СИП магистрали, от воздушной неизолированной линии (ВЛН) к вводам в здания 2х16-4х25 длиной не более 40 м.

**Характеристика:**
✦ Зажим изготовлен из термопластика, усиленного стекловолоконной структурой.

**Особенности:**
✦ При закреплении двух проводов в зажиме, предназначен для четырех проводов, необходимо обязательно заклинить второй клин в его гнезде.

<table>
<thead>
<tr>
<th>Марка</th>
<th>Количество проводов</th>
<th>Сечение СИП, мм²</th>
<th>Диаметр, мм</th>
<th>Разрушающая нагрузка, даН</th>
<th>Масса, г</th>
<th>Кол-во в упаковке, шт.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DN123</td>
<td>2/4</td>
<td>2х16 4х25</td>
<td>5 10,5</td>
<td>350</td>
<td>110</td>
<td>125</td>
</tr>
</tbody>
</table>

Анкерный кронштейн типа СА16

**Назначение:**
✦ Для крепления зажима DN 123 на ответвлениях.

**Характеристика:**
✦ Кронштейн из алюминиевого сплава с высокой устойчивостью к механическим и климатическим воздействиям.
✦ Крепится металлической лентой F207 или стяжными болтами М12 и М14.
✦ Допустимая нагрузка - 200 даН.

**Особенности:**
✦ Кронштейн позволяет выполнить анкерное крепление на опоре или стене здания, сооружения.
Ответственные герметичные зажимы предназначены для соединения фазных и нулевых проводов на ответвлениях от магистрали (медных или алюминиевых). Они обеспечивают надежный электрический контакт.

Зажимы находятся в открытом положении, что облегчает его соединение с проводом. При монтаже зажимов НИЛЕД не требуется применять держатели зажимов и динамометрический ключ, а также срезать с корпуса зажима пластмассу, чтобы поместить в зажим магистральный и ответственный провод.

Зажимы применяются для проводов типа СИП-2, СИП-2А, СИП-4.

Характеристики:
♦ Зажимы рассчитаны на монтаж и эксплуатацию при низких температурах (монтаж до – 20 °C, эксплуатация до – 50 °C).
♦ Коррозионная стойкость металлических деталей испытывается в камере соляного тумана и камере влажного газа SO₂.
♦ Контактные пластины зажимов НИЛЕД имеют пирамидальную форму, что обеспечивает устойчивый электрический контакт и исключает попадание воды в провод.
♦ Монтаж ответственных зажимов фирмы НИЛЕД не влияет на уменьшение механической прочности фазного и нулевого провода.

Особенности:
♦ Демонтаж возможен (вторичный монтаж не допускается).
♦ Усовершенствованная герметичная прокладка позволяет отказаться от применения смазки на контактных поверхностях.
♦ Зажимы данного типа допускают выполнение работ в линии под напряжением.
♦ Головка болта срывается при помощи изолированного торцевого ключа CL13 Clik (допускается применение любого гаечного или накидного ключа 13 мм).
♦ Срок службы зажима данного класса, выполненного из алюминиевого сплава не менее 40 лет.
Зажимы типа Р6, Р645, Р95 обладают повышенной электрической прочностью. Испытания на прочность изоляции зажимов осуществляется в баке с водой в течение 1 минуты действующим значением напряжения 6 кВ.

Зажим ответственный Р6

*Назначение:*
- Применяется для соединения провода СИП магистрали сечением 6-150 мм² с проводом сечением 1,5-6 мм² уличного освещения (медь или алюминий) и для ввода в здание.
- Для уличного освещения можно также применять зажимы Р71, Р72.

Зажим типа Р645

*Назначение:*
- Применяется для соединения СИП магистрали сечением 6-150 мм² с изолированными проводами ответвлений сечением 6-25/35 мм² (медь или алюминий).
- Аналогом зажима Р645 является зажим Р71 и Р72.

Зажим ответственный Р95

*Назначение:*
- Для соединения СИП магистрали сечением 16-150 мм² с проводами ответвлений сечением 16-95 мм² (медь или алюминий).
- Для соединения проводов магистрали можно также применять PR70.

<table>
<thead>
<tr>
<th>Марка</th>
<th>Сечение СИП, мм²</th>
<th>Болт</th>
<th>Макс. нагрузка I, A</th>
<th>Масса, г</th>
<th>Кол-во в упаковке, шт.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Магистрали</td>
<td>Ответвления</td>
<td>Количество болтов</td>
<td>Усилие затяжки, Н•м</td>
<td>Размер головки, мм</td>
</tr>
<tr>
<td>Р6</td>
<td>6-150</td>
<td>1,5-6</td>
<td>1</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>Р645</td>
<td>6-150</td>
<td>6-25/35</td>
<td>1</td>
<td>14</td>
<td>13</td>
</tr>
<tr>
<td>Р95</td>
<td>16-150</td>
<td>16-95</td>
<td>1</td>
<td>16</td>
<td>13</td>
</tr>
<tr>
<td>P150</td>
<td>35-150</td>
<td>35-150</td>
<td>2</td>
<td>16</td>
<td>13</td>
</tr>
<tr>
<td>P240</td>
<td>70-240</td>
<td>70-240</td>
<td>2</td>
<td>22</td>
<td>17</td>
</tr>
</tbody>
</table>

- одножильный провод.
Ответвительные влагозащищенные зажимы типа P21, P71, P72, PR70

**Назначение:**

♦ Применяются для обеспечения надежного электрического контакта методом прокалывания изоляции провода на магистральной линии и зачисткой на ответвлении.

♦ Зажим P21 предназначен для ввода в здание.

♦ Зажим P71 обеспечивает соединение с заземляющим спуском нулевого провода сечением до 35 мм².

♦ Зажимы P71 и P72 предназначены для уличного освещения.

**Характеристика:**

♦ Корпус выполнен из алюминиевого сплава.

♦ Контроль над усилием затяжки при прокалывании изоляции осуществляется болтом диаметром 10 мм с шестигранным срезной головкой на плоской пластинке.

♦ Для алюминиевых и медных проводов.

♦ Надежность контакта обеспечивается применением С-образной формы зажима.

♦ Зажимы смазаны тугоплавким смазочным материалом.

♦ Защита обеспечивается изолирующим чехлом.

♦ Педохранитель защитного чехла может быть поставлен на место только после срыва головки, обеспечивает визуальный контроль за монтажом.

♦ Срок службы зажима данного класса, выполненного из алюминиевого сплава не менее 40 лет.

♦ Конструкция зажима обеспечивает надежность электрического контакта в течение всего срока эксплуатации.

♦ Зажимы рассчитаны на монтаж и эксплуатацию при низких температурах (монтаж до −20 °C, эксплуатация до −50 °C).

**Особенности:**

♦ При соединении медных проводов изолирующие коробки должны быть смазаны!

♦ Допускается вторичный монтаж на ответвлении.

♦ Зажим P72 предназначен для 2-х ответвлений.

♦ Зажим PR70 применяется не только для ответвления магистральных проводов СИП, но и для соединения СИП с кабелем.

<table>
<thead>
<tr>
<th>Марка</th>
<th>Количество ответвлений</th>
<th>Сечение СИП в магистрали, мм²</th>
<th>Сечение СИП на ответвлении, мм²</th>
<th>Макс. нагрузка I, A</th>
<th>Масса, г</th>
<th>Кол-во в упаковке, шт.</th>
</tr>
</thead>
<tbody>
<tr>
<td>P21</td>
<td>1 ответвление</td>
<td>10-25</td>
<td>2,5-35</td>
<td>95</td>
<td>80</td>
<td>50</td>
</tr>
<tr>
<td>P71</td>
<td>1 ответвление</td>
<td>16-95</td>
<td>2,5-54</td>
<td>145</td>
<td>100</td>
<td>-</td>
</tr>
<tr>
<td>P72</td>
<td>2 ответвления</td>
<td>16-95</td>
<td>2,5-54</td>
<td>145</td>
<td>100</td>
<td>-</td>
</tr>
<tr>
<td>PR70</td>
<td>1 ответвление</td>
<td>16-70</td>
<td>16-70</td>
<td>290</td>
<td>130</td>
<td>25</td>
</tr>
</tbody>
</table>

40
Влагозащищенные зажимы типа CD для соединения проводов магистрали

Назначение:
♦ Предназначены для ответвления от неизолированного несущего нулевого провода, а также для ответвления от магистрали ВЛН.
♦ Зажим CD71 предназначен для повторного заземления неизолированного несущего нулевого провода.

Особенности:
♦ Допускается вторичный монтаж.
♦ Зажим CD71 может быть использован для соединения с магистралью из неизолированных проводов.
♦ Стоимость ниже на 15 % по сравнению с N640.

<table>
<thead>
<tr>
<th>Марка</th>
<th>Количество ответвлений</th>
<th>Сечение ВЛН в магистрали, мм²</th>
<th>Сечение СИП на ответвлении, мм²</th>
<th>Макс. нагрузка I, А</th>
<th>Масса, г</th>
<th>Кол-во в упаковке, шт.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD71+B1</td>
<td>1 ответление</td>
<td>35-95</td>
<td>4-54</td>
<td>290</td>
<td>130</td>
<td>50</td>
</tr>
<tr>
<td>CD153N+B1</td>
<td>1 ответление</td>
<td>25-95</td>
<td>25-95</td>
<td>500</td>
<td>190</td>
<td>50</td>
</tr>
</tbody>
</table>

Зажимы ответвительные типа N

Назначение:
♦ Используются для соединения СИП с магистралью ВЛН.

Характеристика:
♦ Контакт с проводом ответвления обеспечивается прокалыванием изоляции.
♦ Контроль усилия затяжки болтов осуществляется применением срывной головки.
♦ Корпус выполнен из изоляционного материала. Устойчив к климатическим и механическим воздействиям.
♦ Контактные пластинки выполнены из луженой латуни.
♦ Контакты со стороны ответвления покрыты смазкой.
♦ Неизолированные провода рекомендуется обрабатывать щеткой ВС.

<table>
<thead>
<tr>
<th>Марка</th>
<th>Сечение ВЛН в магистрали из меди или алюминия, мм²</th>
<th>Сечение СИП на ответвлении из меди или алюминия, мм²</th>
<th>Ответвления</th>
<th>Масса, г</th>
<th>Кол-во в упаковке, шт.</th>
</tr>
</thead>
<tbody>
<tr>
<td>N640</td>
<td>6-120</td>
<td>2,5*; 6-25</td>
<td>1</td>
<td>130</td>
<td>125</td>
</tr>
<tr>
<td>N95</td>
<td>22-150</td>
<td>16-95</td>
<td>1</td>
<td>195</td>
<td>60</td>
</tr>
</tbody>
</table>

*Для ответвления провода сечением 2,5 мм² его необходимо сложить вдвое и поместить внутрь зажима.
Соединительные зажимы предназначены для соединения фазных проводов, а также несущего нулевого провода в пролете. Зажимы обеспечивают необходимую механическую прочность и надежный электрический контакт. Не рекомендуется применять ответственный зажим для соединения СИП в пролете.

Зажим типа MJPT

Назначение:
♦ Используется для соединения несущего нулевого и фазных проводов на магистрали (Al/Al, Al/Cu, Cu/Cu).

Характеристика:
♦ Обеспечивает соединение двух изолированных проводов, в том числе разного сечения.
♦ Соединение осуществляется методом опрессовки с использованием гидравлического пресса НТ 50.
♦ Тип зажима для провода соответствующего сечения определяется по цвету колпачков зажима.

Особенности:
♦ Герметичность контакта улучшена опрессовкой стальных колец.
♦ Для нулевого несущего провода сечением 50 мм² предназначен зажим MJPT54,6N*.
♦ Для СИП-4 необходимо применять зажим MJPTN для всех 4-х проводов.

<table>
<thead>
<tr>
<th>Марка</th>
<th>Сечение соединяемых СИП, мм²</th>
<th>Матрица</th>
<th>Масса, г</th>
<th>Количество в упаковке, шт.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MJPT16</td>
<td>16</td>
<td>E173</td>
<td>45</td>
<td>50</td>
</tr>
<tr>
<td>MJPT25.16</td>
<td>25</td>
<td>E173</td>
<td>45</td>
<td>50</td>
</tr>
<tr>
<td>MJPT25.25</td>
<td>25</td>
<td>E173</td>
<td>100</td>
<td>50</td>
</tr>
<tr>
<td>MJPT35.16</td>
<td>35</td>
<td>E173</td>
<td>100</td>
<td>50</td>
</tr>
<tr>
<td>MJPT35.25</td>
<td>35</td>
<td>E173</td>
<td>100</td>
<td>50</td>
</tr>
<tr>
<td>MJPT35</td>
<td>35</td>
<td>E173</td>
<td>100</td>
<td>50</td>
</tr>
<tr>
<td>MJPT50.25</td>
<td>50</td>
<td>E173</td>
<td>100</td>
<td>50</td>
</tr>
<tr>
<td>MJPT50.35</td>
<td>50</td>
<td>E173</td>
<td>100</td>
<td>50</td>
</tr>
<tr>
<td>MJPT50</td>
<td>50</td>
<td>E173</td>
<td>100</td>
<td>50</td>
</tr>
<tr>
<td>MJPT54,6,50</td>
<td>54</td>
<td>E173</td>
<td>180</td>
<td>35</td>
</tr>
<tr>
<td>MJPT70.35</td>
<td>70</td>
<td>E173</td>
<td>100</td>
<td>35</td>
</tr>
<tr>
<td>MJPT70.50</td>
<td>70</td>
<td>E173</td>
<td>100</td>
<td>35</td>
</tr>
<tr>
<td>MJPT70.54,6</td>
<td>70</td>
<td>E173</td>
<td>100</td>
<td>35</td>
</tr>
<tr>
<td>MJPT70</td>
<td>70</td>
<td>E173</td>
<td>100</td>
<td>35</td>
</tr>
<tr>
<td>MJPT95.50</td>
<td>95</td>
<td>E215</td>
<td>180</td>
<td>35</td>
</tr>
<tr>
<td>MJPT95.70</td>
<td>95</td>
<td>E215</td>
<td>180</td>
<td>35</td>
</tr>
<tr>
<td>MJPT95</td>
<td>95</td>
<td>E215</td>
<td>180</td>
<td>35</td>
</tr>
<tr>
<td>MJPT150.70</td>
<td>150</td>
<td>E215</td>
<td>190</td>
<td>35</td>
</tr>
<tr>
<td>MJPT150.95</td>
<td>150</td>
<td>E215</td>
<td>190</td>
<td>35</td>
</tr>
<tr>
<td>MJPT150</td>
<td>150</td>
<td>E215</td>
<td>190</td>
<td>35</td>
</tr>
<tr>
<td>MJPT35N*</td>
<td>35</td>
<td>E173</td>
<td>100</td>
<td>50</td>
</tr>
<tr>
<td>MJPT54,6N*</td>
<td>54</td>
<td>E173</td>
<td>180</td>
<td>50</td>
</tr>
<tr>
<td>MJPT70.54,6N*</td>
<td>70</td>
<td>E173</td>
<td>180</td>
<td>35</td>
</tr>
<tr>
<td>MJPT70N*</td>
<td>70</td>
<td>E173</td>
<td>180</td>
<td>35</td>
</tr>
<tr>
<td>MJPT95N*</td>
<td>95</td>
<td>E215</td>
<td>180</td>
<td>35</td>
</tr>
</tbody>
</table>

*N – нулевой несущий провод.
Зажим типа МЖРВ

Назначение:
♦ Используется для соединения СИП на ответвлениях (Al/Al; Al/Cu; Cu/Cu).

Характеристика:
♦ Соединительные зажимы, обеспечивают соединение двух изолированных проводов из алюминия и меди.
♦ Соединение происходит путем опрессовки.
♦ Определение сечения по цвету вставок на зажиме.

Последовательность монтажа:
♦ Удалить изоляцию с провода с соблюдением указанной длины.
♦ Произвести зачистку оголенного конца провода щеткой.
♦ Вставить провод внутрь гильзы до упора.
♦ Для соединения используется пресс НТ50 с матрицей Е140.

<table>
<thead>
<tr>
<th>Марка</th>
<th>Сечения соединяемых СИП, мм²</th>
<th>Матрица</th>
<th>Масса, г</th>
<th>Кол-во в упаковке, шт.</th>
</tr>
</thead>
<tbody>
<tr>
<td>МЖРВ4-6</td>
<td>4</td>
<td>Е140</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>МЖРВ6</td>
<td>6</td>
<td>Е140</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>МЖРВ6-10</td>
<td>6</td>
<td>Е140</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>МЖРВ6-16</td>
<td>6</td>
<td>Е140</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>МЖРВ6-25</td>
<td>6</td>
<td>Е140</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>МЖРВ6-35</td>
<td>6</td>
<td>Е140</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>МЖРВ10</td>
<td>10</td>
<td>Е140</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>МЖРВ10-16</td>
<td>10</td>
<td>Е140</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>МЖРВ10-25</td>
<td>10</td>
<td>Е140</td>
<td>25</td>
<td>10</td>
</tr>
<tr>
<td>МЖРВ10-35</td>
<td>10</td>
<td>Е140</td>
<td>25</td>
<td>10</td>
</tr>
<tr>
<td>МЖРВ16</td>
<td>16</td>
<td>Е40</td>
<td>25</td>
<td>10</td>
</tr>
<tr>
<td>МЖРВ16-25</td>
<td>16</td>
<td>Е140</td>
<td>25</td>
<td>10</td>
</tr>
<tr>
<td>МЖРВ16-35</td>
<td>16</td>
<td>Е140</td>
<td>25</td>
<td>10</td>
</tr>
<tr>
<td>МЖРВ25</td>
<td>25</td>
<td>Е140</td>
<td>25</td>
<td>10</td>
</tr>
<tr>
<td>МЖРВ25-35</td>
<td>25</td>
<td>Е140</td>
<td>25</td>
<td>10</td>
</tr>
<tr>
<td>МЖРВ35</td>
<td>35</td>
<td>Е140</td>
<td>25</td>
<td>10</td>
</tr>
</tbody>
</table>

Примечание. Применение соединение проводов СИП при помощи ответвительных зажимов в шлейфах на опорах, приводит к удорожанию линии (прокалывающие зажимы Р 95 дороже соединительных МЖРТ 70) и оставляют лишние куски СИП, которым трудно найти применение. Для ответвлений проводов СИП от магистрали рекомендуется применять ответвительные зажимы, а для соединения проводов СИП – соединительные зажимы.
Изолированные наконечники типа CPTAU

Назначение:
♦ Используется для ввода СИП всех систем в трансформаторные подстанции 10/0,4 кВ.

Характеристика:
♦ Изолированные алюминиевые наконечники с медной клеммой.
♦ Герметичный контакт.
♦ Гильза заполнена нейтральным смазочным материалом.

Особенности:
♦ Соединение с СИП осуществляется опрессовкой с использованием шестигранных матриц (E140/E173; E215).

<table>
<thead>
<tr>
<th>Марка</th>
<th>Сечение СИП, мм²</th>
<th>P, мм</th>
<th>T, мм</th>
<th>L, мм</th>
<th>Матрица</th>
<th>Масса, г</th>
<th>Кол-во в упаковке, шт.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPTAU16</td>
<td>16</td>
<td>25</td>
<td>13</td>
<td>95</td>
<td>E140</td>
<td>100</td>
<td>50</td>
</tr>
<tr>
<td>CPTAU25</td>
<td>25</td>
<td>25</td>
<td>13</td>
<td>95</td>
<td>E140</td>
<td>100</td>
<td>50</td>
</tr>
<tr>
<td>CPTAU35</td>
<td>35</td>
<td>25</td>
<td>13</td>
<td>95</td>
<td>E173</td>
<td>100</td>
<td>50</td>
</tr>
<tr>
<td>CPTAU50</td>
<td>50</td>
<td>25</td>
<td>13</td>
<td>95</td>
<td>E173</td>
<td>100</td>
<td>50</td>
</tr>
<tr>
<td>CPTAU54</td>
<td>54</td>
<td>25</td>
<td>13</td>
<td>95</td>
<td>E173</td>
<td>100</td>
<td>50</td>
</tr>
<tr>
<td>CPTAU70</td>
<td>70</td>
<td>25</td>
<td>13</td>
<td>95</td>
<td>E173</td>
<td>100</td>
<td>50</td>
</tr>
<tr>
<td>CPTAU95</td>
<td>95</td>
<td>25</td>
<td>13</td>
<td>95</td>
<td>E215</td>
<td>130</td>
<td>35</td>
</tr>
<tr>
<td>CPTAU120</td>
<td>120</td>
<td>30</td>
<td>15</td>
<td>120</td>
<td>E215</td>
<td>130</td>
<td>35</td>
</tr>
<tr>
<td>CPTAU150</td>
<td>150</td>
<td>30</td>
<td>15</td>
<td>120</td>
<td>E215</td>
<td>130</td>
<td>35</td>
</tr>
</tbody>
</table>
ЭЛЕКТРОМОНТАЖНЫЕ ИЗДЕЛИЯ ДЛЯ КРЕПЛЕНИЯ СИП

Металлическая лента (AFNOR Z 12сN17 -07)

Назначение:
♦ Для крепления анкерных и подвесных кронштейнов.

Характеристика:
♦ Выполнена из нержавеющей стали с обработанной кромкой.
♦ Поставка в пластмассовой коробке на кассете.
♦ Для монтажа металлической ленты применяется инструмент CVF.

<table>
<thead>
<tr>
<th>Марка</th>
<th>Ширина, мм</th>
<th>Толщина, мм</th>
<th>Длина, м</th>
<th>Масса, г</th>
<th>Кол-во в упаковке, шт.</th>
</tr>
</thead>
<tbody>
<tr>
<td>F204</td>
<td>20</td>
<td>0,4</td>
<td>50</td>
<td>3 200</td>
<td>1</td>
</tr>
<tr>
<td>F207</td>
<td>20</td>
<td>0,7</td>
<td>50</td>
<td>3 900</td>
<td>1</td>
</tr>
</tbody>
</table>

Скрепы и бугели

Назначение:
♦ Используются для фиксации ленты из нержавеющей стали.

<table>
<thead>
<tr>
<th>Тип</th>
<th>Марка</th>
<th>Размеры, мм</th>
<th>Масса, г</th>
<th>Кол-во в упаковке, шт.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Скрепы</td>
<td>NC10</td>
<td>10</td>
<td>5</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>NC20</td>
<td>20</td>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td>Бугели</td>
<td>NB10</td>
<td>10</td>
<td>5</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>NB20</td>
<td>20</td>
<td>20</td>
<td>100</td>
</tr>
</tbody>
</table>

Изделия для подвески СИП на фасаде зданий

Особенности:
♦ Стандартный съемный хомут регулируется в зависимости от диаметра укладываемого провода.
♦ Изолирующий материал обеспечивает двойную изоляцию жил, защищающую от повреждений оболочку проводов.
♦ В креплениях этого типа нет деталей, которые могут коррозировать.
♦ Дюбель изолированный.

<table>
<thead>
<tr>
<th>Способ крепления</th>
<th>Марка</th>
<th>Расстояние от стенки D, мм</th>
<th>Диаметр жгута провода, мм</th>
<th>Масса, г</th>
<th>Кол-во в упаковке, шт.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Крепление с помощью ударов</td>
<td>SF20*</td>
<td>60</td>
<td>18-55</td>
<td>70</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>SF50*</td>
<td>100</td>
<td></td>
<td>70</td>
<td>100</td>
</tr>
</tbody>
</table>

*SF20 / SF50 могут поставляться с хомутом, который вторично открывается.
Стяжные хомуты

Назначение:
♦ Используются для бандажирования пучков проводов СИП.

Характеристика:
♦ Все хомуты легко демонтируются и обеспечивают легкую стяжку проводов без использования специального инструмента.
♦ Устойчивы к радиационному фону, озону и т.д.
♦ Температура плавления: 260 °C.

<table>
<thead>
<tr>
<th>Марка</th>
<th>Тип</th>
<th>Диаметр, мм</th>
<th>Ширина, мм</th>
<th>Длина, мм</th>
<th>Разрушающая нагрузка, даН</th>
<th>Кол-во в упаковке, шт.</th>
<th>Масса, г</th>
</tr>
</thead>
<tbody>
<tr>
<td>E778</td>
<td>2</td>
<td>10-45</td>
<td>8</td>
<td>175</td>
<td>30</td>
<td>100</td>
<td>1150</td>
</tr>
<tr>
<td>E260</td>
<td>2</td>
<td>25-62</td>
<td>8</td>
<td>255</td>
<td>40</td>
<td>100</td>
<td>1250</td>
</tr>
</tbody>
</table>

Герметичные колпачки

Характеристика:
♦ Колпачки изготовлены из пластичной синтетики.

Особенности:
♦ Насадка колпачков не требует подачи горячего воздуха или специального оборудования.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CE6.35</td>
<td>6-35</td>
<td>30</td>
<td>4</td>
<td>10</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>CE25.150</td>
<td>25-150</td>
<td>40</td>
<td>8</td>
<td>18</td>
<td>8</td>
<td>100</td>
</tr>
</tbody>
</table>

Ленты с самосхватывающейся мастикой SCT19

Назначение:
♦ Для восстановления изоляции проводов до 60 кВ. Для наполнения и выравнивания поверхности под термоусаживаемыми изделиями.

Характеристика:
♦ Изоляционная лента черного цвета с самосхватывающейся мастикой.
♦ Лента обладает высокой эластичностью, защищена от радиоактивного фона и озона.
♦ Размер ленты:

Толщина - 0,75 мм.
Длина - 9 м.
Ширина - 19 мм.
Зажим ответственный типа PC481

Назначение:
♦ Используется для замера напряжения, закорачивания и защитного заземления (устанавливаются на первой концевой опоре каждой отходящей от ТП 10/0,4 кВ линии ВЛИ 0,38 кВ). Присоединяется на весь срок службы на фазных и нулевых проводах.

Характеристика:
♦ Изоляция зажима испытана под рабочим напряжением 6 кВ (в течение 1 мин в воде).
♦ Используются прочные резьбовые детали с корпусом из изоляционного материала.
♦ Контроль над усилием затяжки болтов осуществляется применением срываетой головки.
♦ Корпус зажима находится в открытом положении, позволяющем свободно размещать провод при монтаже.
♦ Зажимы предназначены для совместной работы с устройством MaT и M6D.

<table>
<thead>
<tr>
<th>Марка</th>
<th>Сечение СИП, мм²</th>
<th>Болт</th>
<th>Усиление затяжки, Н·м</th>
<th>Размер головки, мм</th>
<th>Макс. нагрузка I, A</th>
<th>Масса, г</th>
<th>Кол-во в упаковке, шт.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC481</td>
<td>16-150</td>
<td>14</td>
<td>13</td>
<td>4</td>
<td>4000</td>
<td>190</td>
<td>50</td>
</tr>
</tbody>
</table>

Устройство заземления MaT

Назначение:
♦ Штепсельная вилка соединяется со штепсельным патроном устройства для закорачивания.

Характеристика:
♦ Комплект состоит из штепсельной вилки со штыковым замком, которая присоединена к заземляющему устройству десятиметровым медным проводом сечением 16 мм².

Особенности:
♦ Необходимо бережно обращаться с инструментом, и после выполнения монтажных работ его следует убрать в футляр.

<table>
<thead>
<tr>
<th>Обозначение</th>
<th>Марка</th>
</tr>
</thead>
<tbody>
<tr>
<td>Заземляющее устройство</td>
<td>MaT</td>
</tr>
<tr>
<td>Устройство для заземления 6 втулок</td>
<td>M6D</td>
</tr>
<tr>
<td>Устройство для заземления 7 втулок</td>
<td>M7D</td>
</tr>
</tbody>
</table>

Примечание: Устройство MaT и M6D (M7D) приобретается эксплуатирующей организацией.
Рекомендуемые способы крепления СИП-2А ВЛИ 0,38 кВ на опорах и фасадах зданий

<table>
<thead>
<tr>
<th>1. Крепление СИП на анкерной концевой опоре</th>
<th>Тип</th>
<th>Наименование</th>
<th>Количество</th>
<th>Цена единицы без НДС, руб.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS10.3</td>
<td>кронштейн анкерный</td>
<td>1 шт.</td>
<td>110,72</td>
<td></td>
</tr>
<tr>
<td>F207</td>
<td>лента крепления</td>
<td>2 м</td>
<td>33,14</td>
<td></td>
</tr>
<tr>
<td>PA1500</td>
<td>анкерный зажим</td>
<td>1 шт.</td>
<td>261,06</td>
<td></td>
</tr>
<tr>
<td>E778</td>
<td>ремешок</td>
<td>2 шт.</td>
<td>2,66</td>
<td></td>
</tr>
<tr>
<td>NC20</td>
<td>скрепа для фиксации ленты</td>
<td>2 шт.</td>
<td>6,75</td>
<td></td>
</tr>
<tr>
<td>CE25.150</td>
<td>герметичные колпачки</td>
<td>4 шт.</td>
<td>31,15</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. Крепление СИП на анкерной опоре</th>
<th>Тип</th>
<th>Наименование</th>
<th>Количество</th>
<th>Цена единицы без НДС, руб.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS10.3</td>
<td>кронштейн анкерный</td>
<td>1 шт.</td>
<td>110,72</td>
<td></td>
</tr>
<tr>
<td>F207</td>
<td>лента крепления</td>
<td>2 м</td>
<td>33,14</td>
<td></td>
</tr>
<tr>
<td>PA1500</td>
<td>анкерный зажим</td>
<td>2 шт.</td>
<td>261,06</td>
<td></td>
</tr>
<tr>
<td>E778</td>
<td>ремешок</td>
<td>3 шт.</td>
<td>2,66</td>
<td></td>
</tr>
<tr>
<td>NC20</td>
<td>скрепа для фиксации ленты</td>
<td>2 шт.</td>
<td>6,75</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3. Крепление СИП на анкерной ответственной опоре</th>
<th>Тип</th>
<th>Наименование</th>
<th>Количество</th>
<th>Цена единицы без НДС, руб.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS10.3</td>
<td>кронштейн анкерный</td>
<td>1 шт.</td>
<td>110,72</td>
<td></td>
</tr>
<tr>
<td>F207</td>
<td>лента крепления</td>
<td>4 м</td>
<td>33,14</td>
<td></td>
</tr>
<tr>
<td>PA1500</td>
<td>анкерный зажим</td>
<td>1 шт.</td>
<td>261,06</td>
<td></td>
</tr>
<tr>
<td>E778</td>
<td>ремешок</td>
<td>5 шт.</td>
<td>2,66</td>
<td></td>
</tr>
<tr>
<td>NC20</td>
<td>скрепа для фиксации ленты</td>
<td>4 шт.</td>
<td>6,75</td>
<td></td>
</tr>
<tr>
<td>P95</td>
<td>зажимы для соединения проводов магистрали</td>
<td>4 шт.</td>
<td>135,44</td>
<td></td>
</tr>
<tr>
<td>ES1500.E</td>
<td>комплект промежуточной подвески</td>
<td>1 шт.</td>
<td>270,88</td>
<td></td>
</tr>
</tbody>
</table>
4. Крепление СИП на анкерной угловой опоре

<table>
<thead>
<tr>
<th>Тип</th>
<th>Наименование</th>
<th>Количество</th>
<th>Цена единицы без НДС, руб.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS10.3</td>
<td>кронштейн анкерный</td>
<td>2 шт.</td>
<td>110,72</td>
</tr>
<tr>
<td>F207</td>
<td>лента крепления</td>
<td>4 м</td>
<td>33,14</td>
</tr>
<tr>
<td>PA1500</td>
<td>анкерный зажим</td>
<td>2 шт.</td>
<td>261,06</td>
</tr>
<tr>
<td>E778</td>
<td>ремешок</td>
<td>3 шт.</td>
<td>2,66</td>
</tr>
<tr>
<td>NC20</td>
<td>скрепа для фиксации ленты</td>
<td>4 шт.</td>
<td>6,75</td>
</tr>
</tbody>
</table>

5. Крепление СИП на промежуточной опоре

<table>
<thead>
<tr>
<th>Тип</th>
<th>Наименование</th>
<th>Количество</th>
<th>Цена единицы без НДС, руб.</th>
</tr>
</thead>
<tbody>
<tr>
<td>F207</td>
<td>лента крепления</td>
<td>2 м</td>
<td>33,14</td>
</tr>
<tr>
<td>ES1500.E</td>
<td>комплект промежуточной подвески</td>
<td>1 шт.</td>
<td>270,88</td>
</tr>
<tr>
<td>E778</td>
<td>ремешок</td>
<td>3 шт.</td>
<td>2,66</td>
</tr>
<tr>
<td>NC20</td>
<td>скрепа для фиксации ленты</td>
<td>2 шт.</td>
<td>6,75</td>
</tr>
</tbody>
</table>

6. Подключение к СИП арматуры уличного освещения

<table>
<thead>
<tr>
<th>Тип</th>
<th>Наименование</th>
<th>Количество</th>
<th>Цена единицы без НДС, руб.</th>
</tr>
</thead>
<tbody>
<tr>
<td>P6</td>
<td>ответственный зажим</td>
<td>3 шт.</td>
<td>80,25</td>
</tr>
<tr>
<td>F207</td>
<td>лента крепления</td>
<td>2 м</td>
<td>33,14</td>
</tr>
<tr>
<td>ES1500.E</td>
<td>комплект промежуточной подвески</td>
<td>1 шт.</td>
<td>270,88</td>
</tr>
<tr>
<td>E778</td>
<td>ремешок</td>
<td>3 шт.</td>
<td>2,66</td>
</tr>
<tr>
<td>NC20</td>
<td>скрепа для фиксации ленты</td>
<td>2 шт.</td>
<td>6,75</td>
</tr>
</tbody>
</table>
### 7. Повторное заземление нулевого провода

<table>
<thead>
<tr>
<th>Тип</th>
<th>Наименование</th>
<th>Количество</th>
<th>Цена единицы без НДС, руб.</th>
</tr>
</thead>
<tbody>
<tr>
<td>P645 или P71</td>
<td>ответвительные зажимы</td>
<td>1 шт.</td>
<td>83,97</td>
</tr>
<tr>
<td>F207</td>
<td>лента крепления</td>
<td>2 м</td>
<td>33,14</td>
</tr>
<tr>
<td>ES1500.E</td>
<td>комплект промежуточной подвески</td>
<td>1 шт.</td>
<td>270,88</td>
</tr>
<tr>
<td>E778</td>
<td>ремешок</td>
<td>3 шт.</td>
<td>2,66</td>
</tr>
<tr>
<td>NC20</td>
<td>скрепа для фиксации ленты</td>
<td>2 шт.</td>
<td>6,75</td>
</tr>
</tbody>
</table>

### 8. Ответвление ВЛИ от ВЛН, ответвление к вводу в здание от ВЛН

<table>
<thead>
<tr>
<th>Тип</th>
<th>Наименование</th>
<th>Количество</th>
<th>Цена единицы без НДС, руб.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS10.3</td>
<td>кронштейн анкерный</td>
<td>1 шт.</td>
<td>110,72</td>
</tr>
<tr>
<td>PA1500 или DN123*</td>
<td>анкерный зажим</td>
<td>1 шт.</td>
<td>261,06 54,85</td>
</tr>
<tr>
<td>N640**</td>
<td>ответственный зажим</td>
<td>4 шт.</td>
<td>166,59</td>
</tr>
<tr>
<td>E778</td>
<td>ремешок</td>
<td>4 шт.</td>
<td>2,66</td>
</tr>
<tr>
<td>NC20</td>
<td>скрепа для фиксации ленты</td>
<td>2 шт.</td>
<td>6,75</td>
</tr>
<tr>
<td>F207</td>
<td>лента крепления</td>
<td>2 м</td>
<td>33,14</td>
</tr>
</tbody>
</table>

* DN123 при ответвления к вводу в здание
** CD71 вместо N640 по желанию заказчика

### 9. Крепление СИП на дополнительной промежуточной опоре на вводе длиной более 25 м

<table>
<thead>
<tr>
<th>Тип</th>
<th>Наименование</th>
<th>Количество</th>
<th>Цена единицы без НДС, руб.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS10.3</td>
<td>кронштейн анкерный</td>
<td>1 шт.</td>
<td>110,72</td>
</tr>
<tr>
<td>DN123</td>
<td>анкерный зажим</td>
<td>2 шт.</td>
<td>54,85</td>
</tr>
<tr>
<td>NC20</td>
<td>скрепа для фиксации ленты</td>
<td>2 шт.</td>
<td>6,75</td>
</tr>
<tr>
<td>F207</td>
<td>лента крепления</td>
<td>2 м</td>
<td>33,14</td>
</tr>
</tbody>
</table>
10. Ответвление к вводу в здание от промежуточной опоры (СИП 4x16, 4x25)

<table>
<thead>
<tr>
<th>Тип</th>
<th>Наименование</th>
<th>Количество</th>
<th>Цена единицы без НДС, руб.</th>
</tr>
</thead>
<tbody>
<tr>
<td>P645</td>
<td>ответственные зажимы</td>
<td>4 шт.</td>
<td>83,97</td>
</tr>
<tr>
<td>F207</td>
<td>лента крепления</td>
<td>3 м</td>
<td>33,14</td>
</tr>
<tr>
<td>ES1500.E</td>
<td>комплект промежуточной подвески</td>
<td>1 шт.</td>
<td>270,88</td>
</tr>
<tr>
<td>DN123</td>
<td>анкерный зажим</td>
<td>1 шт.</td>
<td>54,85</td>
</tr>
<tr>
<td>CA16</td>
<td>кронштейн анкерный</td>
<td>1 шт.</td>
<td>15,58</td>
</tr>
<tr>
<td>E778</td>
<td>ремешок</td>
<td>5 шт.</td>
<td>2,66</td>
</tr>
<tr>
<td>NC20</td>
<td>скрепа для фиксации ленты</td>
<td>2 шт.</td>
<td>6,75</td>
</tr>
<tr>
<td>CE6.35</td>
<td>герметичные колпачки</td>
<td>4 шт.</td>
<td>25,39</td>
</tr>
</tbody>
</table>

11. Крепление СИП на зданиях и сооружениях

| SF20 или SF50 | фасадный кронштейн                                 | 53,16       |

Кронштейны устанавливаются через 0,7 м
SF50 – расстояние от стены 100 мм;
SF20 – расстояние от стены 60 мм.
CT600 - применяется для анкерного крепления СИП от магистрали до стены здания и между зданиями (сооружениями).
Перечень нормативно-технической и справочной документации

1. Правила устройства воздушных линий электропередачи напряжением до 1 кВ с самонесущими изолированными проводами (ПУ ВЛИ до 1 кВ). М., 1997.


4. Электротехнические устройства. СНиП 3.05.06-85. М., ЦИТП Госстроя СССР, 1986.

5. Градостроительство. Планировка и застройка городских и сельских поселений. СНиП 2.07.01-89*. М., Госстрой СССР, 1994.

6. Инструкция по проектированию городских электрических сетей. РД 34.20.185-94. М., Энергоатомиздат, 1995.

7. Руководство по изысканиям трасс и площадок для проектирования электросетевых объектов напряжением 0,4...20 кВ. М., АООТ «РОСЭП», 1999.


Методические указания по расчету электрических нагрузок в сетях 0,38...110 кВ сельскохозяйственного назначения. М., «Сельэнергопроект», 1981.

Нормативы для определения расчетных электрических нагрузок, зданий (квартир), коттеджей, микрорайонов (кварталов) застройки и элементов городской распределительной сети. Изменения и дополнения раздела 2. РД 34.20.185-94. М.: 1999.(опубликованы в РУМ № 11, 2002).

Инструкция по проектированию наружного освещения городов, поселков и сельских населенных пунктов. СН 541-82. М., Стройиздат, 1982.

Номограммы для расчета токов однофазного К.3. на ВЛ 0,38 кВ с самонесущими изолированными проводами скрученными в жгут и неизолированными проводами. РУМ № 2, 2001.

Справочные материалы для проектирования воздушных линий электропередачи напряжением 0,38 кВ с самонесущими изолированными проводами. РУМ № 5, 2001.

Перечень типовых проектов опор ВЛ 0,38 кВ с самонесущими изолированными проводами (СИП) РУМ № 2, 2002.
Приложение

Прайс-листы основных заводов-изготовителей на
самонесущие изолированные провода напряжением 0,6/1 кВ
(Цены указаны в российских рублях за 1 км длины, без НДС,
с учетом стоимости тары)

ОАО «ИРКУТСККАБЕЛЬ»
(Цены действуют с 18.04.03)

ЗАО «МОСКАБЕЛЬМЕТ»
(Цены действуют с 15.04.03 г.)

<table>
<thead>
<tr>
<th>Сечение, мм²</th>
<th>СИП-2</th>
<th>СИП-2А</th>
<th>Сечение, мм²</th>
<th>СИП-2</th>
<th>СИП-2А</th>
</tr>
</thead>
<tbody>
<tr>
<td>3х 16+25</td>
<td>33 060</td>
<td>-</td>
<td>2х16</td>
<td>-</td>
<td>17 571</td>
</tr>
<tr>
<td>3х 50+70</td>
<td>89 220</td>
<td>-</td>
<td>2х25</td>
<td>-</td>
<td>24 186</td>
</tr>
<tr>
<td>3х 70+95</td>
<td>117 660</td>
<td>-</td>
<td>4х16</td>
<td>-</td>
<td>33 277</td>
</tr>
<tr>
<td>2х 16</td>
<td>-</td>
<td>20 040</td>
<td>4х25</td>
<td>-</td>
<td>46 708</td>
</tr>
<tr>
<td>2х 25</td>
<td>-</td>
<td>27 540</td>
<td>1х16+25</td>
<td>-</td>
<td>16 957</td>
</tr>
<tr>
<td>3х 25+54</td>
<td>-</td>
<td>66 240</td>
<td>3х16+25</td>
<td>-</td>
<td>31 924</td>
</tr>
<tr>
<td>3х 25+54+16</td>
<td>-</td>
<td>75 240</td>
<td>3х25+35</td>
<td>-</td>
<td>42 737</td>
</tr>
<tr>
<td>3х 25+54+2х16</td>
<td>-</td>
<td>84 540</td>
<td>4х25+35</td>
<td>-</td>
<td>56 771</td>
</tr>
<tr>
<td>3х 35+54</td>
<td>-</td>
<td>77 260</td>
<td>3х25+54,6</td>
<td>-</td>
<td>60 371</td>
</tr>
<tr>
<td>3х 35+54+16</td>
<td>-</td>
<td>89 280</td>
<td>3х35+50</td>
<td>-</td>
<td>57 274</td>
</tr>
<tr>
<td>3х 35+54+2х16</td>
<td>-</td>
<td>99 300</td>
<td>3х35+50+16</td>
<td>-</td>
<td>67 166</td>
</tr>
<tr>
<td>3х 50+54</td>
<td>-</td>
<td>96 060</td>
<td>3х35+54,6</td>
<td>-</td>
<td>67 829</td>
</tr>
<tr>
<td>3х 50+54+16</td>
<td>-</td>
<td>104 100</td>
<td>3х35+54,6+16</td>
<td>-</td>
<td>78 394</td>
</tr>
<tr>
<td>3х 70+54</td>
<td>-</td>
<td>116 520</td>
<td>3х50+70</td>
<td>-</td>
<td>78 301</td>
</tr>
<tr>
<td>3х 70+54+16</td>
<td>-</td>
<td>125 700</td>
<td>3х50+70+16</td>
<td>-</td>
<td>86 538</td>
</tr>
<tr>
<td>3х 70+70</td>
<td>-</td>
<td>120 720</td>
<td>3х50+54,6</td>
<td>-</td>
<td>84 357</td>
</tr>
<tr>
<td>3х 70+70+16</td>
<td>-</td>
<td>129 420</td>
<td>3х50+54,6+16</td>
<td>-</td>
<td>91 362</td>
</tr>
<tr>
<td>3х 70+70+2х16</td>
<td>-</td>
<td>137 100</td>
<td>3х70+70</td>
<td>-</td>
<td>96 368</td>
</tr>
<tr>
<td>3х 70+70+2х25</td>
<td>-</td>
<td>137 100</td>
<td>3х70+70+16</td>
<td>-</td>
<td>104 484</td>
</tr>
<tr>
<td>3х 95+54</td>
<td>-</td>
<td>157 200</td>
<td>3х70+95</td>
<td>-</td>
<td>103 298</td>
</tr>
<tr>
<td>3х 95+70</td>
<td>-</td>
<td>147 000</td>
<td>3х70+95+16</td>
<td>-</td>
<td>111 390</td>
</tr>
<tr>
<td>3х 95+70+16</td>
<td>-</td>
<td>151 200</td>
<td>3х70+54,6</td>
<td>-</td>
<td>102 286</td>
</tr>
<tr>
<td>3х 95+70+25</td>
<td>-</td>
<td>154 620</td>
<td>3х70+54,6+16</td>
<td>-</td>
<td>110 334</td>
</tr>
<tr>
<td>3х 95+70+2х16</td>
<td>-</td>
<td>160 800</td>
<td>3х95+70</td>
<td>-</td>
<td>118 259</td>
</tr>
<tr>
<td>3х150+70</td>
<td>-</td>
<td>209 520</td>
<td>3х95+70+16</td>
<td>-</td>
<td>136 549</td>
</tr>
<tr>
<td>4х 16</td>
<td>-</td>
<td>37 920</td>
<td>3х95+95</td>
<td>-</td>
<td>126 174</td>
</tr>
<tr>
<td>4х 25</td>
<td>-</td>
<td>53 220</td>
<td>3х95+95+16</td>
<td>-</td>
<td>134 339</td>
</tr>
</tbody>
</table>

53
<table>
<thead>
<tr>
<th>Марка</th>
<th>СИП-2 (тип &quot;АХКА&quot;)</th>
<th>СИП-2А (тип &quot;АХКА-Т&quot;)</th>
<th>Марка</th>
<th>СИП-2А (тип &quot;АХКА-Т&quot;)</th>
<th>СИП-4 (тип &quot;EX, Alus&quot;)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1x16 + 1x25</td>
<td>16 940</td>
<td>21 530</td>
<td>1x16</td>
<td>17 660</td>
<td>16 200</td>
</tr>
<tr>
<td>3x16 + 1x25</td>
<td>31 820</td>
<td>32 000</td>
<td>2x25</td>
<td>24 310</td>
<td>16 200</td>
</tr>
<tr>
<td>3x25 + 1x35</td>
<td>42 960</td>
<td>43 110</td>
<td>3x25</td>
<td>20 160</td>
<td></td>
</tr>
<tr>
<td>3x35 + 1x50</td>
<td>57 570</td>
<td>57 980</td>
<td>3x50</td>
<td>28 430</td>
<td></td>
</tr>
<tr>
<td>3x50 + 1x70</td>
<td>63 050</td>
<td>69 060</td>
<td>3x70</td>
<td>38 060</td>
<td></td>
</tr>
<tr>
<td>3x70 + 1x70</td>
<td>78 700</td>
<td>86 980</td>
<td>2x95</td>
<td>53 010</td>
<td></td>
</tr>
<tr>
<td>3x70 + 1x95</td>
<td>103 830</td>
<td>114 840</td>
<td>3x25</td>
<td>29 640</td>
<td></td>
</tr>
<tr>
<td>3x95 + 1x70</td>
<td>108 000</td>
<td>116 410</td>
<td>3x35</td>
<td>37 010</td>
<td></td>
</tr>
<tr>
<td>3x95 + 1x95</td>
<td>110 320</td>
<td>118 750</td>
<td>3x50</td>
<td>52 480</td>
<td></td>
</tr>
<tr>
<td>3x120 + 1x95</td>
<td>157 520</td>
<td>165 430</td>
<td>3x70</td>
<td>69 860</td>
<td></td>
</tr>
<tr>
<td>4x16 + 1x25</td>
<td>40 990</td>
<td>41 330</td>
<td>4x15</td>
<td>97 660</td>
<td></td>
</tr>
<tr>
<td>4x25 + 1x35</td>
<td>47 350</td>
<td>51 860</td>
<td>3x120</td>
<td>118 120</td>
<td></td>
</tr>
<tr>
<td>3x25+1x35+1x16</td>
<td>53 000</td>
<td>53 440</td>
<td>4x16</td>
<td>28 590</td>
<td></td>
</tr>
<tr>
<td>3x35+1x50+1x16</td>
<td>61 500</td>
<td>62 080</td>
<td>4x25</td>
<td>40 120</td>
<td>32 850</td>
</tr>
<tr>
<td>3x50+1x50+1x16</td>
<td>73 200</td>
<td>82 200</td>
<td>4x35</td>
<td>41 090</td>
<td></td>
</tr>
<tr>
<td>3x50+1x70+1x16</td>
<td>87 900</td>
<td>88 290</td>
<td>4x50</td>
<td>58 070</td>
<td></td>
</tr>
<tr>
<td>3x70+1x70+1x16</td>
<td>97 000</td>
<td>114 200</td>
<td>4x70</td>
<td>77 620</td>
<td></td>
</tr>
<tr>
<td>3x70+1x95+1x16</td>
<td>107 300</td>
<td>113 040</td>
<td>4x95</td>
<td>108 620</td>
<td></td>
</tr>
<tr>
<td>3x95+1x70+1x16</td>
<td>119 040</td>
<td>120 100</td>
<td>4x120</td>
<td>131 390</td>
<td></td>
</tr>
<tr>
<td>3x95+1x95+1x16</td>
<td>124 000</td>
<td>125 100</td>
<td>4x35+1x16</td>
<td>50 000</td>
<td></td>
</tr>
<tr>
<td>3x120+1x95+1x16</td>
<td>176 810</td>
<td>185 650</td>
<td>4x25</td>
<td>65 410</td>
<td></td>
</tr>
<tr>
<td>3x35+1x50+1x25</td>
<td>68 280</td>
<td>90 420</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3x50+1x50+1x25</td>
<td>94 190</td>
<td>126 970</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3x70+1x70+1x25</td>
<td>132 520</td>
<td>132 110</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3x95+1x70+1x25</td>
<td>137 610</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3x95+1x95+1x25</td>
<td>180 350</td>
<td>204 220</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Сечение, мм²</td>
<td>СИП-2</td>
<td>СИП-2А</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>--------</td>
<td>--------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1х16+1х25</td>
<td>14 800</td>
<td>18 600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1х16+1х25+1х16</td>
<td>21 000</td>
<td>25 000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1х16+1х25+1х25</td>
<td>25 000</td>
<td>29 000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1х50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1х70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1х95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2х16</td>
<td></td>
<td>15 200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2х25</td>
<td></td>
<td>20 900</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3х10+1х16</td>
<td></td>
<td>22 000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3х16+1х25</td>
<td>27 400</td>
<td>32 000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3х16+1х25+1х16</td>
<td>36 000</td>
<td>39 200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3х16+1х25+1х25</td>
<td>40 000</td>
<td>43 000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3х25+1х35</td>
<td>37 000</td>
<td>41 500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3х25+1х35+1х16</td>
<td>47 000</td>
<td>49 000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3х25+1х35+1х25</td>
<td>51 000</td>
<td>53 000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3х35+1х50</td>
<td>49 500</td>
<td>55 300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3х35+1х50+1х16</td>
<td>62 000</td>
<td>62 300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3х35+1х50+1х25</td>
<td>66 000</td>
<td>66 000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3х50+1х70</td>
<td>72 000</td>
<td>74 600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3х50+1х70+1х16</td>
<td>70 000</td>
<td>85 800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3х50+1х70+1х25</td>
<td>75 000</td>
<td>89 000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3х70+1х95</td>
<td>89 000</td>
<td>98 500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3х70+1х95+1х16</td>
<td>108 600</td>
<td>113 500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3х70+1х95+1х25</td>
<td>115 000</td>
<td>116 000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3х95+1х95</td>
<td>110 800</td>
<td>119 000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3х120+1х95</td>
<td>143 000</td>
<td>152 000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3х120+1х95+1х16</td>
<td>151 000</td>
<td>159 000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3х120+1х95+1х25</td>
<td>154 000</td>
<td>162 000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4х16</td>
<td></td>
<td>28 700</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4х25</td>
<td></td>
<td>40 300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Наименование</td>
<td>S (мм²)</td>
<td>ед. изм.</td>
<td>Цена без НДС, в рублях</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>----------</td>
<td>----------</td>
<td>-----------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>маг./отв.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Кронштейн анкерный</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS 10.3 (2000 даH)</td>
<td></td>
<td>шт.</td>
<td>110,72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CA 16 (1200 даH)</td>
<td></td>
<td>шт.</td>
<td>15,58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Зажим анкерный (СИП 2А)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAC 1500</td>
<td>50-70</td>
<td>шт.</td>
<td>285,44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PA 1500</td>
<td>50-70</td>
<td>шт.</td>
<td>261,06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PA 2200</td>
<td>80-95</td>
<td>шт.</td>
<td>365,35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DN 35</td>
<td>25-35</td>
<td>шт.</td>
<td>285,44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Зажим анкерный (СИП 2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAC N 95</td>
<td>25-95</td>
<td>шт.</td>
<td>344,02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Зажим анкерный для проводов ввода (СИП 2А)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DN 123</td>
<td>2x16-4x25</td>
<td>шт.</td>
<td>54,85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Зажим анкерный для проводов ввода (СИП 2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAN 25 N</td>
<td>16-35</td>
<td>шт.</td>
<td>155,08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Комплект промежуточной подвески (СИП2А)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ES 1500 E</td>
<td>16-95</td>
<td>шт.</td>
<td>270,88</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Поддерживающий зажим (СИП 2А)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PS 1500+ LM-E</td>
<td>16-95</td>
<td>шт.</td>
<td>170,65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Поддерживающий зажим для проводов ввода (СИП 2А)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PS 216/25</td>
<td>2x16-4x25</td>
<td>шт.</td>
<td>166,59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Поддерживающий зажим (СИП 2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PS 1500 N/T</td>
<td>25-95</td>
<td>шт.</td>
<td>172,01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ответственный зажим</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P 6</td>
<td>6-150/1.5-6</td>
<td>шт.</td>
<td>80,25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P 95</td>
<td>16-150/16-95</td>
<td>шт.</td>
<td>135,44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P 645</td>
<td>6-150/6-25</td>
<td>шт.</td>
<td>83,97</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N 640</td>
<td>6-120/6-25</td>
<td>шт.</td>
<td>166,59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N 95</td>
<td>22-150/16-95</td>
<td>шт.</td>
<td>260,72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD71 +BI</td>
<td>25-95/4-54</td>
<td>шт.</td>
<td>103,27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P 71</td>
<td>35-95/2,5-54</td>
<td>шт.</td>
<td>83,97</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P 72</td>
<td>35-95/2,5-54</td>
<td>шт.</td>
<td>93,11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PR 70</td>
<td>16-70/16-70</td>
<td>шт.</td>
<td>110,04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ответственный зажим для неизолированной нейтрали</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD 153 N+BI</td>
<td>25-95/25-95</td>
<td>шт.</td>
<td>90,07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Зажим для временного заземления</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PC 481</td>
<td>16-150</td>
<td>шт.</td>
<td>197,06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Фасадное крепление</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SF 20</td>
<td>60</td>
<td>шт.</td>
<td>53,16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SF 50</td>
<td>100</td>
<td>шт.</td>
<td>56,21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Наименование</td>
<td>S (мм²)</td>
<td>ед. изм.</td>
<td>Цена без НДС, в рублях</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>---------</td>
<td>---------</td>
<td>-----------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Соединительный зажим</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MJPT 25</td>
<td>25</td>
<td>шт.</td>
<td>72,80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MJPT 35</td>
<td>35</td>
<td>шт.</td>
<td>72,80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MJPT 50</td>
<td>50</td>
<td>шт.</td>
<td>72,80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MJPT 70</td>
<td>70</td>
<td>шт.</td>
<td>72,80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MJPT 95</td>
<td>95</td>
<td>шт.</td>
<td>143,90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MJPT 120</td>
<td>120</td>
<td>шт.</td>
<td>143,90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MJPT 150</td>
<td>150</td>
<td>шт.</td>
<td>143,90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Соединительный зажим для нейтрали</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MJPT 35 N</td>
<td>35</td>
<td>шт.</td>
<td>105,64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MJPT 54,6 N</td>
<td>54</td>
<td>шт.</td>
<td>100,23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MJPT 70 N</td>
<td>70</td>
<td>шт.</td>
<td>141,20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MJPT 95 N</td>
<td>95</td>
<td>шт.</td>
<td>173,70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Соединительный зажим для проводов ввода</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MJPB 6-16</td>
<td>6-16</td>
<td>шт.</td>
<td>35,89</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MJPB 16</td>
<td>16</td>
<td>шт.</td>
<td>35,21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MJPB 25</td>
<td>25</td>
<td>шт.</td>
<td>35,21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MJPB 16-25</td>
<td>16-25</td>
<td>шт.</td>
<td>35,21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Изолированный наконечник</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPTAU 16</td>
<td>16</td>
<td>шт.</td>
<td>140,86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPTAU 25</td>
<td>25</td>
<td>шт.</td>
<td>140,86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPTAU 35</td>
<td>35</td>
<td>шт.</td>
<td>143,57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPTAU 50</td>
<td>50</td>
<td>шт.</td>
<td>143,57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPTAU 54</td>
<td>54</td>
<td>шт.</td>
<td>143,57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPTAU 70</td>
<td>70</td>
<td>шт.</td>
<td>143,57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPTAU 95</td>
<td>95</td>
<td>шт.</td>
<td>191,99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPTAU 120</td>
<td>120</td>
<td>шт.</td>
<td>199,10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPTAU 150</td>
<td>150</td>
<td>шт.</td>
<td>199,10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Стяжной хомут</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 778</td>
<td>D 10-45 мм</td>
<td>100 шт.</td>
<td>266,48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 260</td>
<td>D 25-65 мм</td>
<td>100 шт.</td>
<td>338,60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Лента крепления</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F 207</td>
<td>50 м</td>
<td></td>
<td>1657,05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Лента монтажная (Россия)</td>
<td>40 м</td>
<td></td>
<td>1297,85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Скрепа для ленты</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NC 20</td>
<td>100 шт.</td>
<td></td>
<td>674,49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NB 20</td>
<td>100 шт.</td>
<td></td>
<td>956,54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Колпачок изолирующий</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE 6-35</td>
<td>6-35</td>
<td>шт.</td>
<td>25,39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE 25-150</td>
<td>25-150</td>
<td>шт.</td>
<td>31,15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Устройство для закорачивания</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M 6D</td>
<td>шт.</td>
<td></td>
<td>8583,51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M 7D</td>
<td>шт.</td>
<td></td>
<td>9167,59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MaT</td>
<td>шт.</td>
<td></td>
<td>7364,55</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Открытое акционерное общество по проектированию сетевых и энергетических объектов
ОАО «РОСЭП»

ИНФОРМАЦИОННЫЕ И МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ
по проектированию распределительных электрических сетей

19.05.2003

Москва

/О секционирующих пунктах ВЛ 10 кВ
ОАО «Люберецкий ЭМЗ»/

Публикуем для сведения, что ОАО «Люберецкий электромеханический завод» (Московская обл.) изготавливает секционирующие пункты для ВЛ 6(10) кВ, которые предназначены для автоматического отключения поврежденного участка воздушной линии электропередачи при устойчивых межфазных коротких замыканиях, а также для автоматического включения резервного питания участков сети.

Выключатель по заказу может быть установлен вакуумный типа ВВ/ТЕЛ-10/1000 или масляный типа ВК-10/630.

ОАО «РОСЭП» разработан проект установки СП ОТП.С.03.62.44 «Секционирующие пункты для ВЛ 10(6) с вакуумным (или масляным) выключателем (ОАО «Люберецкий ЭМЗ»), который можно заказать по адресу: 111395, Алея Первой Маевки, д.15.
Тел.: (095) 374-71-00, 374-66-09, факс: (095) 374-66-08.

По вопросу заказа секционирующих пунктов следует обращаться к заводу-изготовителю по адресу: 140000, г. Люберцы, МО, ст.Люберцы-2 МЖД, ОАО «Люберецкий электромеханический завод».
Тел.: (095) 558-20-40, 558-20-01, 558-20-49, факс: (095) 554-50-00.
Телетайп: 206738 КРУН.

Основание: информация ОАО «Люберецкий ЭМЗ».

Первый заместитель генерального директора

А.С.Лисковец
ОАО ЛЮБЕРЕЦКИЙ ЭЛЕКТРОМЕХАНИЧЕСКИЙ ЗАВОД

Техническое описание ТО-005-2002

СЕКЦИОНирующие пункты для ВЛ-6(10) кВ с вакуумным (масляным) выключателем

Общие сведения (применение)
Секционирующие пункты для ВЛ-6(10) кВ предназначены для автоматического отключения поврежденного участка воздушной линии электропередачи при устойчивых междуфазных коротких замыканиях, а также для автоматического включения резервного питания участков сети.

Структура условного обозначения
СП-Х У1:
- СП - секционирующий пункт;
- Х - номинальное напряжение, кВ (6, 10);
- У1 - климатическое исполнение и категория размещения по ГОСТ 15150–69.

Условия эксплуатации
Высота над уровнем моря не более 1000 м.
Температура окружающего воздуха при среднесуточной температуре не ниже минус 40°С и не выше 35–40°С.
Относительная влажность воздуха не более 80% при температуре 20°С.
Окружающая среда взрыво- и пожаробезопасная.
Требования техники безопасности по ГОСТ 12.2.007.0–75 и ГОСТ 12.2.007.4–75.

Нормативно-технический документ (ТУ)

Технические данные

<table>
<thead>
<tr>
<th>Номинальное напряжение, кВ</th>
<th>6(10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Номинальный ток, А</td>
<td>630</td>
</tr>
<tr>
<td>Номинальный ток отключения выключателя, кА</td>
<td>8; 12,5; 20</td>
</tr>
<tr>
<td>Ток термической стойкости в течение 1 с, кА</td>
<td>8; 12,5; 20</td>
</tr>
<tr>
<td>Уровень изоляции по ГОСТ 1516.1–76</td>
<td>Нормальная изоляция</td>
</tr>
<tr>
<td>Уровень внешней изоляции</td>
<td>Нормальная категории &quot;А&quot;</td>
</tr>
<tr>
<td>Тип вакуумного выключателя</td>
<td>ВВ/TEL-10/1000</td>
</tr>
<tr>
<td>Тип масляного выключателя</td>
<td>ВК-10/630</td>
</tr>
<tr>
<td>Тип трансформаторов тока</td>
<td>ТВК или ТЛМ</td>
</tr>
<tr>
<td>Тип трансформаторов напряжения</td>
<td>ОЛС-0,63/6(10) или НОМ-6(10)</td>
</tr>
<tr>
<td>Размеры шкафа, мм</td>
<td>1000×1900×2500</td>
</tr>
</tbody>
</table>

Конструкция и принцип действия
Секционирующие пункты изготовляются на базе шкафов КРУН-6(10)Л. Шкаф разделен перегородками на четыре отсека: линейного ввода, блока выдвижного выключателя с приводом, линейного вывода и аппаратуры управления и релейной защиты. В отсеке линейного ввода размещаются трансформаторы тока и трансформаторы напряжения. В отсеке линейного вывода для секционирующего пункта с АВР устанавливается второй комплект трансформаторов напряжения. Отличительной особенностью конструкции данных шкафов является то, что в них установлено оборудование выкатного (выдвижного) исполнения. Шкаф устанавливается на незаглубленном фундаменте высотой 0,5 м.
Для защиты участков линии 6(10) кВ от междуфазных коротких замыканий предусматривается максимальная токовая защита с обратной зависимой от тока выдержкой времени и токовая отсечка. Разъединитель устанавливается на опоре ВЛ-6(10) кВ.
Допускается установка одного трансформатора типа ОПС (или НОМ) для секционирующего пункта с вакуумным выключателем.

Управление вакуумным выключателем осуществляется с помощью электромагнитного привода прямого действия с магнитной защелкой. Управление масляным выключателем осуществляется с помощью пружинного привода.

Предусматривается двукратное автоматическое повторное включение (АПВ) выключателя, автоматика включения и отключения обогрева, а также возможность телеуправления выключателем.

Схема секционирующих пунктов предусматривает автоматическое включение резервного (АРП) питания участков линий.

Для предотвращения ошибочных действий обслуживающего персонала при оперативных переключениях предусмотрена механическая блокировка, исключающая возможность производства операций с разъединителями до выкатки выдвижных элементов шкафа, а также подачи напряжения при включенных заземляющих ножах.

Общий вид, габаритные и установочные размеры секционирующего пункта приведены на рис. 1.

Рис. 1. Общий вид, габаритные и установочные размеры установки секционирующего пункта:
1 – выключатель масляный ВК-10 или вакуумный ВВ/ГЭП-10;
2 – переходной изолятор (У2);
3 – сетчатое ограждение с кронштейнами для изоляторов;
4 – ограничитель перенапряжения ОПН;
5 – проходной изолятор (У1);
6, 8 – трансформаторы СН ОПС или ТН НОМ;
7 – трансформатор тока ТЛМ-10
Схема электрических соединений секционирующего пункта приведена на рис. 2.

Рис. 2. Схема электрических соединений секционирующего пункта:
QS – разъединитель;
QSG – заземляющий нож;
TV1, TV2 – трансформаторы напряжения;
TA1, TA2 – трансформаторы тока;
QF – выключатель;
FV1–FV3 – разрядники (ОПН)

Схема электрических соединений секционирующего пункта с АВР приведена на рис. 3.

Рис. 3. Схема электрических соединений секционирующего пункта с АВР:
QS1, QS2 – разъединитель;
TV1–TV4 – трансформаторы напряжения;
TA1, TA2 – трансформаторы тока;
FV1–FV6 – разрядники (ОПН), QF – выключатель;
QSG1, QSG2 – заземляющие ножи

Комплектность поставки
В комплект поставки входят: шкаф КРУН с размещенным в нем масляным (вакуумным) выключателем в выкатном исполнении, сетчатого ограждения с изоляторами и разрядниками, разъединителями с приводами и металлоконструкциями для них.
Информационные и методические материалы по проектированию распределительных электрических сетей

05.05.2003

Москва

/Об аппаратуре высокочастотной связи с цифровой обработкой сигналов (АВЦ)/

Публикуем для сведений, что в III квартале 2003 г. фирмой «РАДИС Лтд» будет выпускаться аппаратура высокочастотной связи с цифровой обработкой сигналов (АВЦ).

Аппаратура АВЦ разработана фирмой ООО «РАДИС Лтд» г. Зеленоград (Москва) и ОАО «РОСЭП».

Аппаратура АВЦ предназначена для организации каналов телефонной связи, телемеханической информации и передачи данных по линиям электро-передачи напряжением от 35 кВ и выше между диспетчерским пунктом района или предприятия электрических сетей и подстанциями, либо любыми объектами, необходимыми для диспетчерского и технологического управления в энергосистемах.

По всем вопросам, а также за более подробной информацией по аппаратуре АВЦ следует обращаться к разработчикам:
- ОАО «РОСЭП» по адресу: 111395, г. Москва, Аллея Первой Маевки, д.15; тел. (095) 374-66-10, факс (095) 374-66-08; или
- Фирме ООО «РАДИС Лтд» по адресу: 124460, г. Москва, Зеленоград, Южная промзона, проезд 4806, д. 4, стр. 1; тел./факс (095) 535-02-70; 532-06-63; 532-82-66; 532-29-60.

Первый заместитель генерального директора А.С.Лисковец
1. ВВЕДЕНИЕ

Аппаратура высокочастотной связи с цифровой обработкой сигналов (АВЦ) предназначена для организации каналов телефонной связи, телемеханической информации и передачи данных по линиям электропередачи напряжением от 35 кВ и выше между диспетчерским пунктом района или предприятия электрических сетей и подстанциями либо любыми объектами, необходимыми для диспетчерского и технологического управления в энергосистемах.

Аппаратура АВЦ разработана фирмой ООО “РАДИС Лтд” г. Зеленоград (Москва) и ОАО “РОСЭП” в соответствии с техническим заданием, разработанным ОАО “РОСЭП” и утвержденным ЦДУ ЕЭС РФ.

В аппаратуре широко используются средства цифровой обработки сигналов (ЦОС), что позволяет обеспечить точность, стабильность и повторяемость параметров, отсутствие настройки в процессе производства, гибкость и высокую надежность. Трансмультинплексор, ОБП-модулятор/демодулятор, встроенные модемы телемеханики выполнены с применением сигнальных процессоров и ПЛЛИС; телефонные автоматики и сервисный блок - на базе микроконтроллеров.

Структурная схема аппаратуры АВЦ приведена на рис. 1

2. ТЕХНИЧЕСКИЕ ДАННЫЕ

2.1. Аппаратура АВЦ выполняется в двух вариантах:
   а) разнесенный вариант, состоящий из низкочастотного терминала АВЦ-НЧ и высокочастотного терминала АВЦ-ВЧ;
   б) совмещенный вариант АВЦ-С.

Низкочастотный терминал АВЦ-НЧ устанавливается на диспетчерском пункте.
Высокочастотный терминал АВЦ-ВЧ устанавливается на опорной или узловой подстанции.
Связь между АВЦ-НЧ и АВЦ-ВЧ осуществляется по двум кабельным телефонным парам.
Применение того или иного вариантов аппаратуры определяется при конкретном проектировании канала связи.

2.2. Аппаратура выпускается в одно, двух и четырехканальных вариантах.
2.3. Диапазон рабочих частот аппаратуры от 36 до 1000кГц.
Рис. 1 Структурная схема АВЦ
Расположение рабочих частот выбирается в соответствии со шкалой: (36+4n) кГц, где n-целое число (0,1,2,3...). Вычисленная величина определяет нижний край рабочей полосы частот.

2.4. Номинальная полоса частот одного направления передачи составляет:
- 4 кГц – для одноканальной аппаратуры;
- 8 кГц – для двухканальной аппаратуры;
- 16 кГц – для четырехканальной аппаратуры.

2.5. Минимальный разнос частот между краями номинальных полос передачи и приема для одноканальной и двухканальной аппаратуры составляет 8 кГц, для четырехканальной – 16 кГц.

2.6. Максимальная выходная пиковая мощность ограничивающей на выходе АВЦ-ВЧ составляет 40 Вт.
Одноканальная и двухканальная аппаратура может комплектоваться по заказу передатчиком с пиковой мощностью 10 или 20 Вт.

2.7. Аппаратура работает по принципу амплитудной модуляции с передачей в линию одной боковой полосы частот и сигнала контрольной частоты.
В аппаратуре используется цифровое преобразование частоты, как на передаче, так и на приеме при помощи сигнальных процессоров и ПЛИС.

2.8. Чувствительность приемника составляет минус 25 дБм по телефонному каналу.

2.9. В аппаратуре каждый канал тональной частоты в полосе 0,3-3,4 кГц может быть использован полностью для передачи телефонных сигналов, либо для сигналов телемеханики.
При одновременной передаче телефонных сигналов и телемеханики полоса эффективно передаваемых частот для телефонного канала 0,3 – 2,4 кГц, для канала телемеханики 2,6 – 3,4 кГц.
В качестве контрольного сигнала в каждом канале используются модемы сигналов управления (МСУ) на скорость 50 Бод и со средней частотой 3600 Гц.

2.10. Связь между АВЦ-ВЧ и АВЦ-НЧ осуществляется по двум телефонным параметр следующим образом:
1 канал на тональных частотах в диапазоне 0,3-3,7 кГц;
2 канал на частотах 4,3-7,7 кГц;
3 канал на частотах 8,3-11,7 кГц;
4 канал на частотах 12,3-15,7 кГц.
Частотное уплотнение на передачу и разделение каналов при приеме выполняется трансмультисплексором, выполненным на одном сигнальном процессоре.
Максимальное затухание соединительной линии не должно превышать 20 дБ.
По первому каналу осуществляется наладочная связь между АВЦ-ВЧ и АВЦ-НЧ при помощи переговорно-вызывного устройства, установленного в АВЦ-ВЧ, и реализованного на сигнальном процессоре.

2.11. В АВЦ-НЧ имеются встроенные модемы для аппаратуры телемеханики по 2 на каждый канал, которые могут программироваться на скорость 100 и 200 Бод и на средние частоты 2880, 3000, 3120 Гц. Все модемы, включая МСУ, реализованы на одном сигнальном процессоре.

В АВЦ-НЧ также имеются отдельные изолированные входы для подключения двух внешних модемов телемеханики в каждом канале.

Коррекция частотной характеристики остаточного затухания телефонного канала в тракте приема АВЦ-НЧ осуществляется в сигнальном процессоре трансмультipleksора.

2.12. Телефонная автоматика аппаратуры позволяет подключать:
к АВЦ-НЧ телефонный аппарат для безнаборного занятия канала, абонентский комплект АТС, аппаратуру АДАСЭ;
к АВЦ-С телефонный аппарат с номернабирателем для выхода на диспетчерский телефон или на абонентский комплект АТС.

2.13. При необходимости к четырехпроводному окончанию однока- нальной АВЦ-ВЧ можно подключать аппаратуру АДАСЭ, АНС и др.

2.14. Аппаратура обеспечивает организацию четырехпроводного переприема.

2.15. В аппаратуру предусмотрено сервисное устройство, при помощи которого можно осуществлять:
снятие диаграммы уровней,
снятие амплитудной характеристики остаточного затухания,
снятие частотной характеристики остаточного затухания канала и ввод необходимой коррекции,
проверку встроенных модемов телемеханики,
контроль уровня сигнала контрольной частоты на входе приемника.

2.16. Все фильтры ДК АВЦ-НЧ выполнены на сигнальном процессоре трансмультipleksора.

2.17. Модулятор/демодулятор ОБП АВЦ-ВЧ выполнен на базе сигнального процессора и ПЛИС.

2.18. В аппаратуры АВЦ-ВЧ требуется настройка на рабочую полосу частот только линейного фильтра передатчика и входного фильтра приемника.

2.19. Избирательность приемного тракта аппаратуры составляет не менее 65 дБ при отстройке на 300 Гц от края полосы приема и не менее 100 дБ при отстройке на 4 кГц от края полосы приема.

2.20. Питание аппаратуры осуществляется от сети 220 – 240 В переменного тока частотой 50 Гц.
3. КОНСТРУКЦИЯ

3.1. Габаритные размеры приведены в таблице
Аппаратура высокочастотной связи с цифровой обработкой сигналов

Таблица 1

<table>
<thead>
<tr>
<th>Наименование</th>
<th>Глубина (мм)</th>
<th>Длина (мм)</th>
<th>Высота (мм)</th>
</tr>
</thead>
<tbody>
<tr>
<td>АВЦ-НЧ</td>
<td>300</td>
<td>480</td>
<td>160</td>
</tr>
<tr>
<td>АВЦ-ВЧ</td>
<td>300</td>
<td>480</td>
<td>160</td>
</tr>
<tr>
<td>АВЦ-С</td>
<td>300</td>
<td>480</td>
<td>320</td>
</tr>
</tbody>
</table>

3.2. Сервисный блок имеет четырехстрочный жидкокристаллический дисплей и клавиатуру, что позволяет управлять аппаратурой и проверять ее работоспособность.

3.3. Установка аппаратуры предусматривается на стеллажах или креплением на стену. На стеллаже аппаратуру можно устанавливать вертикально в несколько рядов.

3.4. Кабели для внешних соединений подключаются спереди. ВЧ-кабели подключаются со стороны лицевой панели блока согласования с линией.

Для удобства подключения внешних цепей АВЦ-НЧ и АВЦ-С комплектуются выносным клеммником, который подключается к аппаратуре плоским кабелем.

Общий вид аппаратуры приведен на рис. 2.

Рис 2 Общий вид аппаратуры высокочастотной связи с цифровой обработкой сигналов (АВЦ)
Аппаратура АВЦ успешно прошла заводские испытания и будет выпускаться фирмой “РАДИС Лтд” в III квартале 2003 г.

Ориентировочная цена полукомплекта, состоящего из АВЦ-НЧ –1шт. и АВЦ-ВЧ 1 шт. составляет 7000$. 
Публикуем для сведения, что Раменский завод «Энергия» совместно с ОАО «РОСЭП» и ВЭИ освоил производство элементов настройки нового поколения типов ЭНЗ-200-0,5; ЭНЗ-600-0,25; ЭНЗ-630-0,5; ЭНЗ-1250-0,5 для заградителей на рабочие токи соответственно 200, 600, 630 и 1250 А, в которых повышена электрическая прочность и уровень изоляции, применены ОПН и высокочастотные конденсаторы.

Указанные элементы настройки прошли испытания, приняты межведомственной комиссией с участием представителей ОАО РАО «ЕЭС России» и рекомендованы к постановке на серийное производство.

По всем вопросам, а также за более подробной информацией по указанным элементам настройки следует обращаться к разработчику:

- ОАО «РОСЭП» по адресу: 111395, г. Москва, Аллея Первой Маевки, д.15; тел. (095) 374-66-10, факс (095) 374-66-08; или к изготовителю:

Первый заместитель генерального директора

А.С. Лисковец
НОВЫЕ ЭЛЕМЕНТЫ НАСТРОЙКИ ДЛЯ ВЫСОКОЧАСТОТНЫХ ЗАГРАДИТЕЛЕЙ

Используемые при организации каналов ВЧ связи по ВЛ высокочастотные заградители с элементами настройки типов ЭНУ-0,5-40 и ЭН-1,0-40 были разработаны в 80-х годах и морально устарели как по техническим решениям так и по элементной базе.

Заградители с элементами настройки этих и аналогичных типов часто повреждаются и не отвечают, в достаточной мере современным стандартам по надежности, безопасности, долговечности и электромагнитной совместимости, в частности, не соответствуют "Методическим указаниям по ограничению высокоочастотных коммутационных перенапряжений и защите от них электротехнического оборудования", введенных ОАО РАО «ЭЭС России» с 01.07.98 г., а так же требованиям п.5.4. публикации № 353 МЭК и требованиям п. 7.1 публикации № 481 МЭК в части обеспечения защиты заградителей от перенапряжений при переходных процессах.

Исследования, проведенные ОАО «РОСЭП» показывают, что основными причинами повреждения высокоочастотных заградителей являются:
- перенапряжения в первичных электрических сетях;
- низкая эффективность защитных устройств высокочастотного заградителя;
- переходные процессы и резонансные явления в электрических цепях высокоочастотного заградителя;
- низкая электрическая прочность и недостаточная стабильность элементов схемы высокоочастотного заградителя;
- использование в электрических схемах высокоочастотных заградителей низкочастотных элементов, не предназначенных для работы в высокоочастотном диапазоне, и недостаточная температурная стабильность элементов схемы.

Эти выводы были получены исходя из анализа условий работы в электрических сетях и результатов моделирования переходных процессов в заградителях.

Высокочастотные заградители подключаются к проводам линий электропередачи и должны выдерживать ограниченные во времени воздействия перенапряжений, возникающих в электрических сетях при грозе, коротких замыканиях, коммутационных переключениях.

ВЭИ совместно с ОАО «РОСЭП» разработали для высокоочастотных заградителей специальные защитные устройства без искровых промежутков на основе металлодиодного высоконелинейного ограничителя перенапряжений (в дальнейшем ОПП). В конструкции ОПП приняты меры по устранению вихревых токов для возможности работы в условиях магнитных полей силового реактора высокоочастотного заградителя. Защитный уровень импульсного
напряжения ОПН мало (в пределах 5 %) зависит от фронта волны перенапряжения, а эксплуатационный ресурс в десятки раз превышает ресурс разрядников.

Отличительной особенностью новых элементов настройки для ВЧ заградителей является применение двухконтурной схемы настройки, широко применяемой в зарубежных заградителях.

Функциональные возможности заградителя оцениваются шириной его полосы заграждения, в пределах которой сохраняются номинальные значения заграждающего сопротивления в течение срока службы при токах короткого замыкания и изменениях температуры.

Одна из причин нарушения работоспособности высокочастотных заградителей состоит в применении в элементах настройки низкостабильных комплектующих изделий, а так же в нарушении области их применения. Так при использовании низковольтных конденсаторов типа К75 невозможно обеспечить необходимую реактивную мощность на высоких частотах до 1000 кГц. Кроме того, при изменении температуры внешней среды у таких конденсаторов емкость изменяется на 5 %.

Резисторы типа ТВО, применяемые в конструкции элементов настройки при изменении температуры имеют отклонения сопротивления от номинального значения на 12 %, а в течение срока службы - на 30 %, вследствие чего возникает расстройка колебательных контуров схемы высокочастотного заградителя и изменение его заграждающего сопротивления в 1,5 – 2 раза.

Раменским заводом «Энергия» совместно с ОАО «РОСЭП» и ВЭИ освоено промышленное производство элементов настройки нового поколения типов ЭНЗ-200-0,5; ЭНЗ - 600 - 0,25; ЭНЗ-630-0,5; ЭНЗ-1250-0,5 для заградителей на рабочие токи соответственно 200, 600, 630 и 1250 А, в которых повышена электрическая прочность и уровень изоляции, применены ОПН и высокочастотные конденсаторы.

Эти элементы настройки соответствуют современным требованиям электромагнитной совместимости и стандарта МЭК (публикация № 353), успешно прошли испытания в НИЦ ВВА «Бескудниково», приняты межведомственной комиссией с участием представителей ОАО РАО «ЕЭС России » и являются конкурентоспособными с зарубежными аналогами.

В настоящее время ведется разработка новых элементов настройки для заградителей на рабочий ток 2000 А.

Основные типы и характеристики элементов настройки, выпускаемых Раменским заводом, приведены в таблице 1.
Таблица 1

<table>
<thead>
<tr>
<th>Данные</th>
<th>ЭНЗ-200-0,5</th>
<th>ЭНЗ-600-0,25</th>
<th>ЭНЗ-630-0,5</th>
<th>ЭНЗ-1250-0,5</th>
<th>ЭНЗ-2000-0,5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Номинальное значение индуктивности реактора, мГн</td>
<td>0,5</td>
<td>0,25</td>
<td>0,5</td>
<td>0,5</td>
<td>0,5</td>
</tr>
<tr>
<td>Минимальное загрязняющее сопротивление в полосе загрязнения, Ом</td>
<td>640</td>
<td>600</td>
<td>640</td>
<td>640</td>
<td>470</td>
</tr>
<tr>
<td>Диапазон рабочих частот, кГц</td>
<td>44-1000</td>
<td>118-1000</td>
<td>34-1000</td>
<td>36-1000</td>
<td>24-1000</td>
</tr>
<tr>
<td>Номинальный ток, А</td>
<td>200</td>
<td>600</td>
<td>630</td>
<td>1250</td>
<td>2000</td>
</tr>
<tr>
<td>Ток термической стойкости в течение 1 с, кА</td>
<td>10</td>
<td>16</td>
<td>16</td>
<td>31,5</td>
<td>40</td>
</tr>
<tr>
<td>Ток электродинамической стойкости, кА</td>
<td>26</td>
<td>41</td>
<td>41</td>
<td>80</td>
<td>100</td>
</tr>
<tr>
<td>Габаритные размеры, мм</td>
<td>393х400х19 5</td>
<td>Ø118х480</td>
<td>Ø118х480</td>
<td>Ø131х486</td>
<td>Ø131х486, 350х350х626</td>
</tr>
<tr>
<td>Номинальное напряжение конденсаторов, кВ</td>
<td>6,5 – 10,0</td>
<td>16 – 35</td>
<td>16 – 35</td>
<td>26 – 46</td>
<td>33 – 58</td>
</tr>
<tr>
<td>Масса, кг, не более</td>
<td>5</td>
<td>5,5</td>
<td>5,5</td>
<td>7,5</td>
<td>18,0</td>
</tr>
<tr>
<td>Температурный диапазон, °C</td>
<td>От -45 до +40</td>
</tr>
<tr>
<td>Срок службы</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>
Открытое акционерное общество по проектированию сетевых и энергетических объектов
ОАО «РОСЭП»

ИНФОРМАЦИОННЫЕ И МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ
по проектированию распределительных
электрических сетей

05.05.2003

Москва

/О высокочастотных заградителях
спиральных типа ЗВС-200-0,5/

Публикуем для сведения, что высокочастотные заградители спираль-ные типа ЗВС-200-0,5 прошли испытания, приняты межведомственной комиссией с участием представителей РАО «ЕЭС России» и рекомендованы к постановке на серийное производство.

Указанные заградители типа ЗВС-200-0,5 предназначены для установки на воздушных линиях электропередачи напряжением 35 кВ при оборудова-нии на них высокочастотных каналов связи для передачи сигналов телемеханики, релейной защиты и телефонной связи.

По всем вопросам, а также за более подробной информацией по данным заградителям следует обращаться к разработчику:
- ОАО «РОСЭП», 111395, г. Москва, Алея Первой Маевки, д.15;
  тел. (095) 374-66-10, факс (095) 374-66-08;
  или к изготовителю:
- ОАО Раменский электротехнический завод «Энергия», по адресу:
  140106, Московская область, г. Раменское, ул. Левашова, д.21;
  тел. 8 (246) 3-39-41; факс 8 (246) 3-39-09; отдел сбыта: 8 (246) 3-10-37.

Первый заместитель генерального директора

А.С. Лисковец
Высокочастотные заградители спиральные типа ЗВС-200-0,5 предназначены для установки на воздушных линиях электропередачи напряжением 35 кВ при оборудовании на них высокочастотных каналов связи для передачи сигналов телемеханики, релейной защиты и телефонной связи. Они обеспечивают высокое значение загражающего сопротивления в используемом для высокочастотной связи диапазоне частот, а на промышленной частоте имеет незначительное сопротивление.

Заградители предназначены для работы в следующих условиях:
Воздействие климатических факторов внешней среды — для длительной работы в исполнении «У» категории размещения I по ГОСТ 15150-69*, тип атмосферы II по ГОСТ 15150-69*, высота установки над уровнем моря до 1000 м. Окружающая среда — не взрывоопасная, не содержащая агрессивных газов и паров в концентрациях, разрушающих металлы и изоляцию, не насыщенная токопроводящей пылью.

ЗВС (рис.1) состоит из реактора, элемента настройки и защитного устройства. В качестве защитного устройства на частотах от 44 до 260 кГц используется специальный ограничитель перенапряжений (ОПН), а в диапазоне частот от 200 до 1000 кГц используется специальное защитное устройство, совмещающее ОПН и искровой промежуток. Выводы ОПН выполнены из немагнитной стали.

В заградителе используется силовой реактор в виде однослоевой спирали. Токоведущим проводником реактора является пакет из алюминиевых лент шириной 60 мм с изоляционными прослойками. Реактор пропитан электроизоляционным компаундом. Основные технические характеристики ЗВС-200-0,5 приведены в табл. 2.

Элемент настройки удовлетворяет требованиям МЭК (публикация № 353). Конструктивно элемент настройки помещен внутри пластмассового корпуса и состоит из индуктивности, двух магазинов конденсаторов, двух резисторов и защитного устройства, установленных на плате.

ЗВС-200-0,5 прошли испытания:
1. Протокол испытаний № 28-2001 от 19.11.01 г. «Подтверждение показателей назначения при испытаниях на нагрев номинальным током в продолжительном режиме» ОАО НИЦ ВВА.
2. Протокол испытаний № 28-2001 от 19.11.01 г. «Испытания электрической прочности изоляции на соответствие требованиям технических условий ОАО «РОСЭП» ОАО НИЦ ВВА.
3. Высокочастотный заградитель принят межведомственной комиссией с участием представителей ОАО РАО «ЕЭС России» и рекомендован департаментом к постановке на серийное производство.
Рис.1 Заградитель высокочастотный спиральный ЗВС-200-0,5.
Общий вид.

1 - реактор, 2 - элемент настройки с защитным устройством,
3 - стальное основание, 4 - серьга (рым-болт), 5 - изоляционная стойка
Основные технические характеристики высокочастотного спирального заградителя ЗВС-200-0,5

Таблица 2

<table>
<thead>
<tr>
<th>Наименование параметра</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Номинальный длительный ток, А.</td>
</tr>
<tr>
<td>2. Диапазон частот заграждения, кГц</td>
</tr>
<tr>
<td>3. Класс напряжения линий электропередачи, кВ</td>
</tr>
<tr>
<td>4. Номинальный кратковременный ток короткого замыкания в течение 1 с., кА.</td>
</tr>
<tr>
<td>5. Ударный ток короткого замыкания, кА</td>
</tr>
<tr>
<td>6. Минимальное значение активной составляющей полного сопротивления, Ом.</td>
</tr>
<tr>
<td>7. Индуктивность реактора на промышленной частоте, мГн</td>
</tr>
<tr>
<td>8. Мощность активных потерь при номинальном рабочем токе, кВт.</td>
</tr>
<tr>
<td>9. Климатическое исполнение и категория размещения по ГОСТ 15150</td>
</tr>
<tr>
<td>10. Габаритные размеры: мм</td>
</tr>
<tr>
<td>в плане</td>
</tr>
<tr>
<td>высота</td>
</tr>
<tr>
<td>Масса, кг</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Величина параметра</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
</tr>
<tr>
<td>44-53, 52-68, 66-85, 82-117, 100-166, 132-260, 200-1000</td>
</tr>
<tr>
<td>35</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>26</td>
</tr>
<tr>
<td>640</td>
</tr>
<tr>
<td>0,6</td>
</tr>
<tr>
<td>0,6</td>
</tr>
<tr>
<td>У1</td>
</tr>
<tr>
<td>825</td>
</tr>
<tr>
<td>644</td>
</tr>
<tr>
<td>60</td>
</tr>
</tbody>
</table>
По вопросам информации, публикуемых в РУМ, а также их заказа следует обращаться по телефонам: (095) 374-71-00 или 374-66-09;
по факсу: (095) 374-66-08 или 374-62-40

Подписано в печать _______ 23 ряд 2003 г.

Генеральный директор
В.И. Шевляков

Ответственный за выпуск
А.С. Лисковец

Тираж 300 экз.

Формат 60х84/8
Учетн.-изд. лист 5,4
Зак. N

ОАО «РОСЭП»
111395, Москва, Аллея Первой Масевки, 15
тел 374-71-00, 374-66-09
факс 374-66-08, 374-62-40