РУКОВОДЯЩИЕ МАТЕРИАЛЫ

ПО ПРОЕКТИРОВАНИЮ
ЭЛЕКТРОСНАБЖЕНИЯ
СЕЛЬСКОГО
ХОЗЯЙСТВА
Акционерное общество открытого типа по проектированию сетевых и энергетических объектов

АО РОСЭП

Руководящие материалы
по проектированию электроснабжения сельского хозяйства

Август

Москва 1997
СОДЕРЖАНИЕ

Информационные и методические материалы по проектированию строительству и эксплуатации сельских электрических сетей (ИММ)

стр.

02. Линии электропередачи

ИММ N 02.09-97 от 20.05.97
Рекомендации по устройству ответвлений от ВЛ 0,38 кВ к вводам в здания самонесущими изолированными проводами...3

03. Подстанции

ИММ N 03.12-97 от 27.02.97
О теврещениях КТП 10/0,4 кВ с РУ 10 кВ из КРУН типа К-59 СЭЦ.........................15

ИММ N 03.13-97 от 15.05.97
О разработке ОМП 7195 "ЭРУ 10 кВ с ячейками К-59 УЗ с воздушными и кабельными вводами..18

ИММ N 03.14-97 от 15.05.97
О разработке ОТМ 7253 "Маслоуловитель емкостью до 24 м³ из сборных конструкций (с рабочей частью из ж/б трубы) для ПС 35-110 ...19

ИММ N 03.15-97 от 20.05.97
О выпуске секционирующих пунктов СП-10 кВ и СП с АВР 10 кВ производства ОАО "Люберецкий ЭМЗ"...20

ИММ N 03.16-97 от 20.05.97
О КТП 10/0,4 кВ городского типа Самарского з-да "Электроэнергит"..........................36
Рекомендации по устройству ответвлений от ВЛ 0,38 кВ к вводам в здания самонесущими изолированными проводами

Публикуем рекомендации по устройству ответвлений от ВЛ 0,38 кВ к вводам в здания с применением самонесущих изолированных проводов марки "Торсала" (Франция).

Данные рекомендации дополняют технические инструкции по проектированию ВЛ 0,38 кВ с самонесущими проводами, приведенные в РУМ N 9-1993 г, N 7-1995 г. и N 3-1996 г.

Приложение: упомянутые рекомендации.

Зам.Генерального директора АО РОСЭП

Ю.М. Кадыков
В данной информации приведены рекомендации по устройству ответвлений от ВЛ 0,38 кВ к вводам в здание самонесущими изолированными проводами марки "Торсдаб" (Франция).

По сравнению с традиционным выполнением вводов неизолированными (глымы) проводами устройство вводов указанными изолированными проводами имеет ряд преимуществ:
- Исключаются склетения проводов, а следовательно короткие замыкания между ними.
- Повышается безопасность и сокращаются случаи электротравматизма в зоне устройства вводов в здания.

Вводы в здания самонесущими изолированными проводами могут выполняться ответвлениями от ВЛ 0,38 кВ как изолированными, так и неизолированными проводами.

СИП марки "Торсдаб" для ответвлений к вводам в здания (жилые дома) представляют собой два (однофазный ввод) или четыре (трехфазный ввод) изолированных провода (жилы) сантые в жгут относительно друг друга, технические характеристики которых приведены в табл.1 и 2.

Таблица 1.

<table>
<thead>
<tr>
<th>Число жил</th>
<th>Наружный диаметр СИП в целом, мм</th>
<th>Максимальное линейное сопротивление петли при плюс 20°С, Ом/км</th>
<th>Длительные токи нагрузки в постоянном режиме, А</th>
<th>Падение напряжения, В/км</th>
<th>Разрывная прочность каждой жилы, даН</th>
<th>Масса, кг/км</th>
</tr>
</thead>
<tbody>
<tr>
<td>2x16</td>
<td>14,8</td>
<td>1,91</td>
<td>83</td>
<td>3,98</td>
<td>190 290</td>
<td>140</td>
</tr>
<tr>
<td>2x25</td>
<td>18,2</td>
<td>1,20</td>
<td>108</td>
<td>2,54</td>
<td>300 450</td>
<td>213</td>
</tr>
<tr>
<td>4x16</td>
<td>17,8</td>
<td>1,91</td>
<td>74</td>
<td>3,28</td>
<td>190 290</td>
<td>280</td>
</tr>
<tr>
<td>4x25</td>
<td>21,8</td>
<td>1,20</td>
<td>97</td>
<td>2,18</td>
<td>300 450</td>
<td>426</td>
</tr>
</tbody>
</table>
Типоразмеры, масса и длина СИП марки "Торсада"
на барабане, номера барабанов

<table>
<thead>
<tr>
<th>Число жил х их сечение, шт х мм²</th>
<th>Упаковка</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Масса бараб.</td>
</tr>
<tr>
<td></td>
<td>кг</td>
</tr>
<tr>
<td>2x16</td>
<td>58</td>
</tr>
<tr>
<td>2x16</td>
<td>73</td>
</tr>
<tr>
<td>4x16</td>
<td>73</td>
</tr>
<tr>
<td>4x16</td>
<td>156</td>
</tr>
<tr>
<td>2x25</td>
<td>59</td>
</tr>
<tr>
<td>2x25</td>
<td>116</td>
</tr>
<tr>
<td>4x25</td>
<td>116</td>
</tr>
<tr>
<td>4x25</td>
<td>207</td>
</tr>
</tbody>
</table>

Материал жил - алюминий.
Изоляция - атмосферостойкий стабилизированный сшитой полиэтилен, не поддерживающий горение, обладающий защитными свойствами от солнечной радиации (ультрафиолетового излучения) и воздействия озона. Обладает влагонепроницаемостью, высокой диэлектрической жесткостью и обеспечивает механическую и электрическую прочность при температурах от минус 40° С до плюс 80° С.

По климатическому исполнению и категории размещения СИП марки "Торсада" отвечает требованиям ГОСТ 15150-69 и обеспечивает возможность применения в районах с климатом:
- умеренным (У)
- умеренным и холодным (УХЛ)
- холодным (Х).

Все виды механических нагрузок и воздействий на СИП отвечают к вводу в здание воспринимают все провода (жилья) СИП.
Длина пролета ответвления от ВЛ или от ВЛИ к вводу в здание определяется расчетом в зависимости от прочности опоры ВЛ или ВЛИ, на которой выполняется ответвление, габаритов подвески СИП ответвления на опоре ВЛ или ВЛИ и на вводе (наружной стене здания) количества и сечения жил СИП ответвления, нормируемого габарита от СИП ответвления к вводу до поверхности земли, а также климатических условий (гололедно-ветровых нагрузок) района, в котором осуществляется строительство.

При соблюдении вышеперечисленных условий и требований, максимально допустимые пролеты ответвлений от ВЛИ по условиям механической прочности СИП при стреле провеса СИП, равной 0,5 м и температуре воздуха плюс 15° С не должны превышать значений, приведенных в табл. 3.

Таблица 3.

Максимально допустимые пролеты ответвлений от ВЛИ
к вводам в здания

<table>
<thead>
<tr>
<th>Число жил х сечение СИП, шт х мм²</th>
<th>2х16</th>
<th>2х25</th>
<th>4х16</th>
<th>4х25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Расчетные климатические условия</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Наиболее неблагоприятный скоростной напор ветра *)</td>
<td>30</td>
<td>40</td>
<td>39</td>
<td>40</td>
</tr>
<tr>
<td>1 даН снежного слоя при минус 10° С без ветра</td>
<td>30</td>
<td>40</td>
<td>39</td>
<td>40</td>
</tr>
<tr>
<td>2 даН снежного слоя при минус 10° С без ветра</td>
<td>25</td>
<td>30</td>
<td>35</td>
<td>40</td>
</tr>
</tbody>
</table>

*) либо ветер 480 Па при плюс 15° С,
 либо ветер 180 Па при минус 20° С.

При длине ответвлений от ВЛИ более значений, указанных в табл. 3, а также при невозможности соблюдения нормируемого габарита от СИП ответвления к вводу в здание до поверхности земли, около здания, в которое осуществляется ввод, должна быть установлена дополнительная опора концевого типа нормальной или облегченной конструкции, воспринимающая в нормальном режиме работы одностороннее тяжение СИП.
Ввод в здание до вводного коммутационного аппарата в вводно-распределительном устройстве здания (жилого дома) рекомендуется выполнять тем же СИП (без его разрезания) которым выполнено ответвление от ВЛ или ВЛИ к вводу в здание.

На основании "Инструкции по электроснабжению индивидуальных жилых домов и других частных сооружений" (М., МП "Энергосервис", 1994) граница эксплуатационной ответственности за состоянием и обслуживанием электроустановки здания между потребителем и энергоснабжающей организацией устанавливается на вводных контактах коммутационного аппарата вводно-распределительного устройства.

Ответственность за состоянием контактных соединений на границе эксплуатационной ответственности несет энергоснабжающая организация.

Концы СИП, присоединяемые к вводным контактам коммутационного аппарата вводно-распределительного устройства здания (жилого дома), оконцовываются одним из видов следующей контактной предустановленной арматуры:

- кабельными наконечниками типа ТА или аппаратными зажимами типа АПА, типоразмер которых определяется в зависимости от сечения проводов (жил) СИП при проектировании электроснабжения конкретного здания.

При этом, ширину лапки наконечника или зажима следует уменьшить до размеров вводных контакта коммутационного аппарата.

В тех случаях, когда ввод в здание (жилой дом) выполняется не СИП марки "Торсана", а изолированными проводами других марок, их концы присоединяются к свободным концам СИП ответвления к вводу, после их выхода из натяжного зажима марки РА25. Присоединение выполняется ответвительными зажимами марки ПЗ 21 в комплекте с защитными изолирующими кожухами.

При этом, граница эксплуатационной ответственности устанавливается на этих зажимах.

При трехфазных ответвлениях к вводам в здания (жилое дома) в случае необходимости передачи большей электрической мощности, чем позволяет пропускная способность СИП марки "Торсана" сеч. 4х25 мм², рекомендуется применение СИП марки "Торсана" соответствующего сечения, предназначенного для магистраль ВЛИ 0,38 кВ.

СИП марки "Торсана", предназначенные для магистрали ВЛИ 0,38 кВ, состоят из трех изолированных проводов (жил), скрученных в жгут поверх изолированной несущей нулевой жилы из алюминиевого термоупрочненного сплава, с помощью которой осуществляется подвеска СИП марки "Торсана" (сечением 54,6 мм² для фазных жил сечением 35-70 мм² и сечением 70 мм² для фазных жил сечением 70-150 мм²) в пролете ответвления от опоры ВЛ или ВЛИ к вводу в здание, воспринимающая все виды механических нагрузок и воздействий на СИП.

ЛИНЕЙНАЯ АРМАТУРА ДЛЯ СИП МАРКИ "ТОРСАНА" ДЛЯ УСТРОЙСТВА ОТВЕТВЛЕНИЙ ОТ ВЛИ ИЛИ ОТ ВЛ К ВВОДАМ ЗДАНИЯ

При устройстве ответвлений от воздушных линий электропередачи напряжением 0,38 кВ к вводам в здания самонесущими изолированными проводами марки "Торсана" следует применять следующую линейную арматуру:
<table>
<thead>
<tr>
<th>№ п/п</th>
<th>Наименование арматуры</th>
<th>Тип, марка</th>
<th>Назначение</th>
<th>Примечание</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Узел крепления</td>
<td>BQ12-250</td>
<td>Для установки натяжного зажима концевого крепления двухжильного (BQC12-250) или четырехжильного (BQC12-300) СИП двухпроводного или четырехпроводного ответвления от магистрали ВЛП или ВЛ к вводу в здание. Устанавливается на опоре и на вводе в здание (на наружной стене здания) *)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>BQ12-300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Узел крепления</td>
<td>CS10</td>
<td>Для установки натяжного зажима концевого крепления несущей нулевой жилы сечением 54,6 мм² четырехжильного СИП с сечением фазных жил 35 мм² и более четырехпроводного ответвления от магистрали ВЛП или ВЛ к вводу в здание. Устанавливаются на опоре ВЛП или ВЛ и на вводе в здание (на наружной стене здания) *)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Лента стальная бандажная</td>
<td>Ksd 6839721</td>
<td>Для установки узлов крепления на опоре ВЛП или ВЛ при концевом креплении СИП ответвлений от магистрали ВЛП или ВЛ к вводам в здания.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Натяжной зажим</td>
<td>PA 25</td>
<td>Для концевого крепления двухжильного или четырехжильного (сечением 16 или 25 мм²) СИП от ветвлений от магистрали ВЛП или ВЛ к вводам в здания. Крепление на опоре ВЛП или ВЛ и на вводе в здание (на наружной стене здания).</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Натяжной зажим</td>
<td>PA 54</td>
<td>Для концевого крепления несущей нулевой жилы сечением 54,6 мм² четырехжильного СИП с сечением фазных жил 35 мм² и более четырехпроводного ответвления от магистрали ВЛП или ВЛ к вводу в здание.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>6</td>
<td>Зажим ответвительный в комплекте с защитным изолирующим кожухом</td>
<td>PZ 21</td>
<td>Крепление на опоре ВЛИ или ВЛ и на вводе в здание (на наружной стене здания).</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Зажим ответвительный в комплекте с защитным изолирующим кожухом</td>
<td>PZ 31</td>
<td>Для присоединения двухжильного или четырехжильного СИП сечением 16-35 мм² двухпроводного или четырехпроводного ответвления к фазным жилам сечением 35-95 мм² СИП магистрали ВЛИ.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Зажим ответвительный в комплекте с защитным изолирующим кожухом</td>
<td>TZZ-150</td>
<td>Для присоединения нулевой жилы двухжильного или четырехжильного СИП сечением 16 или 25 мм² к несущей нулевой жиле сечением 54,6 мм² СИП магистрали ВЛИ.</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Зажим ответвительный в комплекте с защитным изолирующим кожухом</td>
<td>PZ 22pF</td>
<td>Для присоединения к несущей нулевой жиле из алюминиевого термоупрочненного сплава сечением 54,6 мм² СИП магистрали ВЛИ: 1. Нулевой жилы двухжильного или четырехжильного СИП сечением 16 или 25 мм² двухпроводного или четырехпроводного ответвления от магистрали ВЛИ к вводу в здание или несущей нулевой жилы сечением 54,6 мм² диаметром 8,34 мм четырехжильного СИП с сечением фазных жил 35 мм² и более четырехпроводного ответвления от магистрали ВЛИ к вводам в здание. 2. Круглого стального оцинкованного заземляющего проводника 6 мм.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>---</td>
<td>-----------</td>
<td>----------------------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>10</td>
<td>Зажим соединительный плашечный</td>
<td>ПА-1-1; ПА-2-2; ПА-3-2</td>
<td></td>
<td>Для присоединения двухжильных и четырехжильных СИП сечением</td>
</tr>
</tbody>
</table>
<pre><code> | | | 16 мм² и более двухпроводных или четырехпроводных ответвлений | | |
 | | | к неизолированным проводам сечением 16-120 мм² ВЛ. | | |
</code></pre>
<p>| 11| Зажим соединительный плашечный | ПС-1-1 (б/на ПС-1-1А) | | Для соединения заземляющих про-водников на опорах ВЛ или ВЛ, на | оречестезного производства |
| | | которых выполняется заземление | | | | |
| 12| Перфорированная лента | CSB; CSL | | Для скрепления расплененных жил СИП в петлях и в местах | оречестезного производства |
| | | установки зажимов | | |
| 13| Самосклейвающаяся лента | Одна из марок СЭЛА | | То же, а также для наложения дополнительной изоляции | оречестезного производства |
| 14| Изолирующие колпачки (кап- | | | Для наложения изоляции на сводные концы (торцы) жил СИП. | | |
| пы) | | | | | |</p>

Самонесущие изолированные провода марки "Торса" изготавливаются по французскому стандарту NFC 33-209 французскими фирмами "Каблери де Ланс" и "Самел".

СИП марки "Торса" и линейная арматура для их монтажа сертифицированы в Российской Федерации. Поставляется совместным российско-французским предприятием "Эпоика" (142040, г.Домодедово Московской области, Главпочтампт а/я 73, т. 230-57-49).

Примеры устройства ответвления от ВЛИ 0,38 кВ и ввода в здание приведены в приложении.

Приложения:

1. Устройство двухпроводного ввода в здание (пример).
2. Устройство ответвления от ВЛ 0,38 кВ.
3. Устройство ответвлений от ВЛ 0,38 кВ.
<table>
<thead>
<tr>
<th>№</th>
<th>Название</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Натяжной замок</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Труба разводящая</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Устройство для крепления</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Столб разводящий</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Лента для обвязки</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Вводно-расспределительного устройства здания

Врезка устройства для ответвления от ВЛИ 0,38 кВ и ввода в здание

<table>
<thead>
<tr>
<th>№</th>
<th>СИП</th>
<th>Количество</th>
<th>Шт</th>
<th>Мест.</th>
<th>Тип</th>
<th>Размеры</th>
<th>Ответвление от ВЛИ 0,38 кВ</th>
<th>Ввод в здание</th>
<th>Влияние</th>
</tr>
</thead>
<tbody>
<tr>
<td>246</td>
<td>22</td>
<td>ВТК-30/3-0,3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Выхода воздушного провода от ВЛИ 0,38 кВ и ввода в здание

до поверхности земли, по месту. не менее 2750 м.

Коммутиционному аппарату.
линза 0,38 кВ

При устройстве ответвления от воздушных линий электропередачи напряжением 0,38 кВ к вводам здания самонесущими изолированными проводами марки "Торсала" следует применять следующую линейную арматуру:

<table>
<thead>
<tr>
<th>№ п/п</th>
<th>Наименование арматуры</th>
<th>Тип, марка</th>
<th>Назначение</th>
<th>Примечание</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Узел крепления</td>
<td>БГС12-250 или БГС12-300</td>
<td>Для установки чатного зажима концевого крепления двухжильного (ГС12-250) или четырехжильного (ГС12-300) СП двухпроводного или четырехпроводного ответвления.</td>
<td>Устанавливаются на опоре ВЛ и на вводе в здание (на наружной стене здания).</td>
</tr>
</tbody>
</table>

Устройство ответвления от ВЛ 0,38 кВ
<table>
<thead>
<tr>
<th>№ п/п</th>
<th>Наименование арматуры</th>
<th>Тип, марка</th>
<th>Назначение</th>
<th>Примечание</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Узел крепления</td>
<td>CSIO</td>
<td>Для установки натяжного зажима концевого крепления на натяжной жиле сечением 54,6 мм², 16-35 мм², четырёхжильного СИП с сечением фазных жил 35 мм² и более четырёхпроводного ответвления от БЛК к вводу в здание. Устанавливаются на опоре БЛК на вводе в здание (на наружной стене здания).</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Лента стальная бандажная</td>
<td>Код 682972I</td>
<td>Для установки узлов крепления на опоре БЛК концевого крепления СИП ответвлений от БЛК к вводам в здание.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Натяжной зажим</td>
<td>PA 25</td>
<td>Для концевого крепления двухжильного или четырёхжильного (сечением 16 или 25 мм²) СИП ответвления от БЛК к вводам в здание. Крепление на опоре БЛК и на вводе в здание (на наружной стене здания).</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Натяжной зажим</td>
<td>PA 54</td>
<td>Для концевого крепления несущей нулевой жилы сечением 54,6 мм² четырёхжильного СИП с сечением фазных жил 35 мм² и более четырёхпроводного ответвления от БЛК к вводу в здание. Крепление на опоре БЛК и на вводе в здание (на наружной стене здания).</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Зажим ответвительный в комплекте с защитным изолирующим кожухом</td>
<td>PZ21</td>
<td>Для присоединения двухжильного или четырёхжильного СИП сечением 16-35 мм², двухпроводного или четырёхпроводного ответвления к фазным жилам сечением 35 мм² СИП БЛК.</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Зажим ответвительный в комплекте с защитным изолирующим кожухом</td>
<td>PZ 31</td>
<td>Для присоединения четырёхжильного СИП сечением 35-96 мм², четырёхпроводного ответвления к фазным жилам сечением 35-96 мм² СИП БЛК.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Зажим ответвительный в комплекте с защитным изолирующим кожухом</td>
<td>ЖЗ2-150</td>
<td>Для присоединения нулевой жилы двухжильного или четырёхжильного СИП сечением 16 или 25 мм² к несущей нулевой жиле сечением 54,6 мм² СИП БЛК.</td>
<td></td>
</tr>
<tr>
<td>№ П/П</td>
<td>Наименование аппаратуры</td>
<td>Тип, марка</td>
<td>Назначение</td>
<td>Примечание</td>
</tr>
<tr>
<td>-------</td>
<td>------------------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>9</td>
<td>Заким ответвительный в комплекте с защитным изолирующим кожухом</td>
<td>РЭ 22р</td>
<td>Для присоединения к несущей нулевой жиле сечением 54,6 мм² СЖИ ВЛ:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1. Нулевой жилы двухжильного или четырехжильного СЖИ сечением 16 или 25 мм² двухпроводного или четырехпроводного ответвления от магистрали ВЛ к вводу в здание или несущей нулевой жилы сечением 54,6 мм² (диаметром 8,34 мм) четырехжильного СЖИ сечением фазных жил 35 мм², и более четырехпроводного ответвления от ВЛ к вводам в здания.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2. Круглого стального оцинкованного заземляющего проводника диаметром 6 мм,</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Заким соединительный плосечный</td>
<td>ПС-1-1 (СБ. ПС-1-1А)</td>
<td>Для соединений заземляющих породников на опорах ВЛ на которых выполняется заземление</td>
<td>Отцеплены внутренних фазных жил СЖИ</td>
</tr>
<tr>
<td>11</td>
<td>Перфорированная лента</td>
<td>C S B; C S L</td>
<td>Для скрепления расставленных жил СЖИ в петлях опор и в местах установки закимов</td>
<td>То же, а также для наложения дополнительной изоляции</td>
</tr>
<tr>
<td>12</td>
<td>Самослесывающаяся лента</td>
<td>Одна из марок: ДПСАР; ДПСАР ЛМ</td>
<td>То же, а также для наложения дополнительной изоляции</td>
<td>Отцеплены внутренних фазных жил СЖИ</td>
</tr>
<tr>
<td>13</td>
<td>Изолирующие колпачки (капли)</td>
<td></td>
<td>Для наложения изоляции на свободные концы (торцы) жил СЖИ</td>
<td></td>
</tr>
</tbody>
</table>
Крепление натяжного зажима РА 25 допускается выполнять как показано на рис. 1. При этом узел крепления БКС 12 заменяется на крюк К-КО-1, показанный на рис. 2.

Рис. 1. Крепление крюка К-КО-1 в кирпичной (железобетонной) стене здания

Рис. 2. Общий вид и размеры крюка К-КО-1
Линейная арматура для СИП марки "Торсана" при устройстве ответвлений от ВЛ 0,38 кВ

При устройстве ответвлений от воздушных линий электропередачи напряжением 0,38 кВ к вводам в здания самонесущими изолированными проводами марки "Торсана" следует применять следующую линейную арматуру:
<table>
<thead>
<tr>
<th>№ п/п</th>
<th>Наименование арматуры</th>
<th>Тип, марка</th>
<th>Назначение</th>
<th>Примечание</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Узел крепления</td>
<td>ВОСИ2-250 или ВОСИ2-300</td>
<td>Для установки натяжного зажима концевого крепления двужильного (ВОС I2-250) или четырехжильного (ВОСИ2-300) СИП двухпроводного или четырехпроводного ответвления от ВЛ к вводу в здание. Устанавливаются на опоре ВЛ и на вводе в здание (на наружной стене здания).</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Узел крепления</td>
<td>CSIO</td>
<td>Для установки натяженного зажима концевого крепления несущей нулевой жилы сечением 54,6 мм² четырехжильного СИП сечением фазных жил 35 мм² и более четырехпроводного ответвления от ВЛ к вводу в здание. Устанавливаются на опоре ВЛ и на вводе в здание (на наружной стене здания).</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Лента стальная-бандажная</td>
<td>Код 6839721</td>
<td>Для установки узлов крепления на опоре ВЛ при концевом креплении СИП ответвлений от ВЛ к вводам в здания</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Натяжной зажим</td>
<td>PA 25</td>
<td>Для концевого крепления двужильного или четырехжильного (сечения 16 или 25 мм²) СИП ответвлений от ВЛ к вводам в здания. Крепление на опоре ВЛ и на вводе в здание (на наружной стене здания)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Натяжной зажим</td>
<td>PA 54</td>
<td>Для концевого крепления несущей нулевой жилы сечением 54,6 мм² четырехжильного СИП с сечением фазных жил 35 мм² и более четырехпроводного ответвления от ВЛ к вводу в здание. Крепление на опоре ВЛ и на вводе в здание (на наружной стене здания).</td>
<td></td>
</tr>
<tr>
<td>№ пп</td>
<td>Наименование арматуры</td>
<td>Тип, марка</td>
<td>Назначение</td>
<td>Примечание</td>
</tr>
<tr>
<td>------</td>
<td>----------------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>6</td>
<td>Зажим соединительный плоский</td>
<td>ПА-1-1; ПА-2-2; ПА-3-2</td>
<td>Для присоединения двухжильных и четырехжильных СИП сечением 15 мм² и более двухпроводных или четырехпроводных ответвлений к неизолированным проводам сечением 16-120 мм² ВЛ</td>
<td>Отсутствует</td>
</tr>
<tr>
<td>7</td>
<td>Зажим соединительный (быв. ПС-1-IA)</td>
<td>ПС-1-IA</td>
<td>Для соединений заземляющих проводников на опорах ВЛ, на которых выполняется заземление</td>
<td>Отсутствует</td>
</tr>
<tr>
<td>8</td>
<td>Перфорированная лента</td>
<td>CSB; CSL</td>
<td>Для скрепления расплененных жил СИП в местах установки зажимов</td>
<td>Отсутствует</td>
</tr>
<tr>
<td>9</td>
<td>Самосклеивающаяся лента</td>
<td>Одна из марок: СЕЛА; ЛЕТСАР; ЛЕТСАР ЛУ</td>
<td>То же, а также для наложения дополнительной изоляции</td>
<td>Отсутствует</td>
</tr>
<tr>
<td>10</td>
<td>Изолирующие колпачки (кап-пы)</td>
<td></td>
<td>Для наложения изоляции на свободные концы (торцы) жил СИП</td>
<td>Отсутствует</td>
</tr>
</tbody>
</table>

П р и м е ч а н и е: На вводе в здание допускается замена узла крепления ВСС 12 на крюк К-КО-1, за который крепится натяжной зажим РА 25.
О техрежениях КТП 10/0.4 кВ с РУ 10 кВ из КРУН типа К-59 СЭЦ

Сообщаем, что АО "Нижегородскаярэнергопроект" разработало технические решения "Комплексная трансформаторная подстанция мощностью 2x630 кВА с развитым РУ 10 кВ на 6 линейных присоединений, комплектуемым из КРУН 10 кВ типа К-59У1 производства Самарского завода "Электрощит".

Публикуем информацию АО "Нижегородскаярэнергопроект" по указанной техдокументации.

Приложение: 1. Информационный листок
2. Схема и эскиз-чертеж общего вида КТП.

Зам. Генерального директора

Ю.М. Кадыков
ОАО "Нижегородсксельэнергопроект" разработало отраслевые технические решения ОТР 7439 "Комплектная трансформаторная подстанция 10/0,4 кВ с РУ 10 кВ".

Техническая характеристика КТП 10/0,4 кВ с РУ 10 кВ:
- тип КТПК(ВВК)630/10-1/0,4-96-У1;
- схема электрическая на стороне 10 кВ "Одиночная, секционированная выключателем, система шин на 6 линейных присоединений";
- установленная мощность, кВА - 2х630 (возможно применение трансформаторов меньшей мощности);
- комплектация из КРУН 10 кВ типа К-59 У1 (ХЛ1) и КТП 10/0,4 кВ производства АО "Самарский завод "Электрощит". Электроустановка имеет высокий уровень заводского изготовления, т.е. быстромонтируемая на строительной площадке, и учитывает возможность перспективного развития в ПС 110(35)/10 кВ.

Справки по телефону
(3312)42-51-60
Субботин А.А.
(3312)42-53-16
Аврова Е.Г.
Схема электрических соединений стороны 10 кВ
О разработке ОМП7195 "ЗРУ 10 кВ с ячейками К-59У3 с воздушными и кабельными выводами"

Для сведения и руководства при проектировании и строительстве сообщаем, что ОАО "Нижегородсксельэнергопроект" разработало отраслевые материалы для проектирования ОМП7195 "Закрытое распределительное устройство 10 кВ с ячейками К-59У3 с воздушными и кабельными выводами 10 кВ.

Технические показатели ЗРУ 10 кВ с КРУ серии К-59У3:
- напряжение, кВ - 10(6);
- номинальный ток главных цепей, А - 630; 1000; 1600;
- схема - N10(6)-1 "Одна одиночная, секционированная выключателем, система шин";
- число отходящих линий напряжением 10 кВ, шт 14, в том числе с воздушным выводом - 8; с кабельным выводом -6;
- трансформатор собственных нужд ТСКС-40/10, напряжением 10/0,4/0,23 кВ мощностью 40 кВА, штук - 2;
- выключатели маломощные - ВК-10-20-У2 ; ВКЭ-10-20-У2;
- оперативный ток, В - переменный (выпрямленный) 220 ;
- здание ЗРУ одноэтажное, безподвальное с кирпичными несущими стенами и железобетонным перекрытием, пролетом 7,5 м, длиной 13,5 м.

КРУ заказывается на Самарском заводе "Электросил" как в комплекте с КТПБ(M), так и отдельно.

Применение настоящей работы позволит расширить область применения шкафов К-59 для закрытой установки и тем самым повысить надежность электроснабжения, улучшить условия эксплуатации оборудования, продлить срок его службы.

За справками и по вопросам заказа следует обращаться в институт ОАО "Нижегородсксельэнергопроект" по адресу: 603600 г. Новгород, ГСП 1150, пр.Ленина, 20, АТ-151201, АМПЕР, тел. (8312)42-50-66, факс (8312) 42-51-60,-Костеева Л.Ф.

Зам. Генерального директора АО РОСЭП Ю.М. Каляков
Акционерное общество открытого типа по проектированию сетевых и энергетических объектов

АО РОСЭП

ИНФОРМАЦИОННЫЕ И МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ

по проектированию, строительству и эксплуатации сельских электрических сетей

15.05.97

03.14-97

Москва

/ О разработке ОТМ 7253
"Маслопудовитель емкостью до 24 м³
из сборных конструкций (с рабочей
частью из ж/б трубы) для ПС 35-110 кВ”/

Для сведения и руководства при проектировании и строительстве сообщаем,
что ОАО "Нижегородсксельэнергопроект" разработало отраслевые материалы ОТМ
7253 "Маслопудовитель емкостью до 24 м³ из сборных конструкций (с рабочей
частью из железобетонной трубы) для подстанций 35-110 кВ".

Рабочая часть маслопудовителя запроектирована из сборных ж/бетонных труб
ТФ200.30-2 Ф2000 мм по ГОСТ 6482-88 высотой 3000 мм, стальные ж/бетонные
элементы маслопудовителя приняты по серии 3.900-3, вып.7.

Набором труб в клане от одной до трех обеспечивается требуемый объем
маслопудовителя от 8 до 24 м³.

Данный проект рекомендуется для тех регионов, где не освоен выпуск

За справками и по вопросам заказа следует обращаться в институт ОАО
"Нижегородсксельэнергопроект" по адресу: 603600 г.Н.Новгород, ГСП 1150, пр.
Ленина, 20, АТ-151203, Ампер, тел. (8312) 42-42-01, факс (8312) 42-51-60, Туйцына
Л.А.

Зам. Генерального директора АО РОСЭП

Ю.М.Кадыков
Акционерное общество открытого типа по проектированию сетевых и энергетических объектов

АО РОСЭП

ИНФОРМАЦИОННЫЕ И МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ

по проектированию, строительству и эксплуатации сельских электрических сетей

03.15.97

Москва

О выпуске секционирующих пунктов
СП 10 кВ и СП с АВР 10 кВ производства ОАО "Люберецкий ЭМЗ"

Для сведения сообщаем, что ОАО "Люберецкий ЭМЗ" освоил выпуск секционирующих пунктов 6(10) кВ для автоматического отключения поврежденного участка воздушной линии электропередачи 10 кВ при устойчивых двухфазных коротких замыканиях и для автоматического включения резервного питания участка сети.

Публикуем информацию об указанных изделиях.

Особенностью СП 10 кВ и СП с АВР 10 кВ являются:
- СП выполняются с вакуумными выключателями типа ВВ/ТЕЛ-10/630 или с масляными выключателями типа ВК-10/630.
- Шкафы изготовлены в выкатном (выдвижном) исполнении, что обеспечивает надежное и удобное обслуживание и ремонт.

Разработчик и изготовитель:

ОАО Люберецкий электромеханический завод
Адрес: 140000, Московская обл., г. Люберцы: 555-20-49.

Сооружение секционирующего пункта 6(10) кВ рекомендуется выполнять по типовому проекту "Секционирующие пункты для ВЛ 6(10) кВ с вакуумным (масляным) выключателем" ОТПЛС.03.52.44-97, распространяемому АО РОСЭП (Сель-энергопроект). Адрес: 111395, Москва, Аллея Первой Маевки, 5; тел. 374-71-00.

Приложение: информация.

Зам. Генерального директора АО РОСЭП

Ю.М. Кадыков

20.05-97

N
ОАО Люберецкий ЭМЗ предлагает

СЕКЦИОНИРУЮЩИЕ ПУНКТЫ 6(10) кВ

для автоматического отключения поврежденного участка
ВЛ 6(10) кВ при устойчивых межфазных коротких замыканиях
и для автоматического включения резервного питания участков линий.

В шкафу КРУН 6(10) кВ секционирующего пункта предусматривается выкатной элемет, что обеспечивает:

НАДЕЖНОЕ и УДОБНОЕ

обслуживание и ремонт, а в необходимых случаях позволяет производить оперативную замену наиболее ответственного и сложного электроаппаратуры-выключателя с приводом.

ЭЛЕКТРИЧЕСКИЕ СЕТИ

Москва, 1997
НАЗНАЧЕНИЕ

Секционирующий пункт 6(10) кВ предназначен для автоматического отключения поврежденного участка воздушной линии электропередачи 10 кВ при устойчивых междуфазных коротких замыканиях.

Секционирующий пункт с АВР 6(10) кВ предназначен для автоматического включения резервного питания участков сети.

УСЛОВИЯ ЭКСПЛУАТАЦИИ

Категория исполнения по ГОСТ 15150-88 - У1
Высота над уровнем моря - не более 1000 м

Температура окружающего воздуха от -45° C до +40° C

Степень загрязненности атмосферы согласно инструкции РД.34.51.101-90 - I-III

Окружающая среда невзрывоопасная, несодержащая токопроводящей пыли, агрессивных газов и паров в концентрациях, снижающих параметры КТИ в недопустимых пределах

Внешняя изоляция по ГОСТ 9920-75 - категория "A"

Район по ветру и гололеду - I-III

Относительная влажность окружающего воздуха не более 80% при температуре 20° C
ТЕХНИЧЕСКИЕ ДАННЫЕ

Технические данные приведены в нижеследующей таблице:

<table>
<thead>
<tr>
<th>Наименование параметра</th>
<th>Значение параметра</th>
</tr>
</thead>
<tbody>
<tr>
<td>Номинальное напряжение, кВ</td>
<td>6(10)</td>
</tr>
<tr>
<td>Номинальный ток, А</td>
<td>630</td>
</tr>
<tr>
<td>Ток термической стойкости в течение 1 с, кА</td>
<td>8</td>
</tr>
<tr>
<td>Ток электродинамической стойкости, кА</td>
<td>20</td>
</tr>
<tr>
<td>Уровень изоляции по ГОСТ 1516.1-76</td>
<td>Нормальная изоляция</td>
</tr>
<tr>
<td>Уровень внешней изоляции</td>
<td>Нормальная категория "А"</td>
</tr>
<tr>
<td>Размеры шкафа, м</td>
<td>1,0х1,9х2,5(г)</td>
</tr>
</tbody>
</table>

СХЕМА ЭЛЕКТРИЧЕСКИХ СОЕДИНЕНИЙ

Схема шкафа секционирующего пункта СП (или СП с АВР) 6(10) кВ предусматривает установку в нем:

- вакуумного выключателя с электромагнитным приводом или масляного выключателя с пружинным приводом;
- силовых трансформаторов или трансформаторов напряжения для питания оперативных цепей управления выключателя, обогрева и т. д.
- трансформаторов тока для подключения устройств релейных защит;
- ограничителей напряжения или вентильных разрядников для защиты от грозовых и внутренних перенапряжений.

Указанные оборудование размещено в шкафу КРУН-6(10)Л-У1. Подключение шкафа секционирующего пункта (СП) к ВЛ 10 кВ осуществляется через разъединитель, устанавливаемый на опоре ВЛ 10 кВ.

У секционирующего пункта АВР (с двусторонним питанием) разъединители 10 кВ устанавливаются с обеих сторон БЛ 6(10) кВ.
Для защиты участков линий 6(10) кВ от межфазных замыканий предусматривается максимальная токовая защита с обратной зависимостью от тока выдержкой времени и токовая отсечка.

Управление вакуумным выключателем 10 кВ осуществляется с помощью электромагнитного привода прямого действия с магнитной защелкой. Управление масляного выключателя осуществляется с помощью пружинного привода.

Предусматривается двухкратное АПВ выключателя, автоматика включения и отключения обогрева счетчика, а также возможность телеуправления выключателем.

Для СП с АВР предусматривается устройство автоматического включения резервного питания.

Для расчетного учета электроэнергии по требованию заказчика может быть установлен счетчик активной энергии САЗУ, подключаемый в сеть через трансформаторы тока (только для варианта шкафа с вакуумным выключателем).

Для предотвращения ошибочных действий обслуживающего персонала при оперативных переключениях предусмотрена механическая блокировка. Блокировка исключает возможность отключения или включения тока нагрузки разъединителями, подачи напряжения при включенных заземляющих вожках.

КОНСТРУКЦИЯ И ФУНДАМЕНТ

СП и СП с АВР 6(10) кВ изготавливаются на базе шкафов КРУН наружной установки, выпускаемых ЭМЗ г. Люберцы, Московская область.

Оборудование размещается в металлическом шкафу. Шкаф разделен перегородками на четыре отсека: линейного ввода; блока выдвижного выключателя с приводом; линейного вывода и аппаратуры управления и релейной защиты. В отсеке линейного ввода размещаются трансформаторы тока и трансформаторы СН или ТН.
В отсеке линейного вывода для СП с АВР устанавливается второй комплект трансформаторов СН (или ТН).
Особенностью конструкции данных шкафов СП и СП с АВР является то, что в них установлено оборудование выкатного (выдвижного) исполнения.

Отечественный и зарубежный опыт эксплуатации КРУ показал, что наиболее надежной и удобной в эксплуатации конструкцией является КРУ с наличием выдвижных элементов, так как они обеспечивают удобство обслуживания и ремонта, а в необходиных случаях позволяют производить замену наиболее ответственных и сложных электроаппаратов - выключателей с приводом.

Шкаф снабжен подогревательным устройством с автоматическим режимом работы.

Шкаф устанавливается на незаглубленном фундаменте высотой 0,3 м. Для обслуживания и выкатка выдвижного элемента шкафа предусмотрена обслуживающая площадка.

РАЗРАБОТЧИК И ИЗГОТОВИТЕЛЬ:

ОАО Люберецкий электромеханический завод
140000, Московская обл., г. Люберцы т. 553-29-49, 554-43-27
Телефон-факс 554-50-00

- Сооружение секционирующего пункта 6(10) кВ рекомендуется выполнять по типовому проекту "Секционирующие пункты для ВЛ 6(10) кВ с вакуумным (масляным) выключателем". N проекта - ОТП.С.03.62.44-97, распространяемым АО РОСЭП (Сельэнергопроект).

Адрес: 111395, Москва, Аллея Первой Мая, 5.
tел. 374-71-00
ПРИЛОЖЕНИЕ

1. Схема СП
2. Схема СП с АВР
3. Общий вид установки СП и СП с АВР
4. Общий вид шкафа
5. Схема размещения защит СП
6. Схема размещения защит СП с АВР
7. Опросный лист на СП 6(10) кВ (заявление заводу)
8. Опросный лист на СП с АВР 6(10) кВ (заявление завodu)
1. Разъединитель устанавливается на опоре ВЛ 6(10) кВ
2. Допускается установка одного трансформатора типа ОЯС (или НОМ) для СП с вакуумным выключателем

Разъединитель
РЛНД-1-10.200
ОПН-6(10) или разрядник
РВО-6(10)
ТН типа ОЯС 0.63/6(10) (ТН типа НОМ-6(10))
Тр-ры тока ТЛМ-10
Выключатели
BB/TEL-10/630 или ВК-10/630

Схема электрических соединений сеционирующего пункта СП

ОТП. С. 03. 02. 44-97
1. Разъединитель устанавливается на опорах ВЛ 6(10) кВ
2. Допускается установка по одному тр-ру типа ОЛС (или НОМ) для СП с вакуумным выключателем.

<table>
<thead>
<tr>
<th>Разъединитель</th>
<th>РЛНД-1-10.200</th>
<th>ДН-6(10) или разрядник</th>
<th>РВО-6(10)</th>
<th>ТСН типа ОЛС-043/6(10) (ТН тип НОМ-6(10))</th>
<th>Тр-ры тока ТЛМ-10</th>
<th>Выключатель ВВ/TEL-10/630 или ВК-10/630</th>
<th>ТСН типа ОЛС-043/6(10) (ТН тип НОМ-6(10))</th>
<th>ОПН-6(10) или разрядник РВС-6(10)</th>
<th>Разъединитель РЛНД-1-10.200</th>
</tr>
</thead>
</table>

Схема электрических соединений СП с АВР
При сооружении пункта АВР устанавливается дополнительно ОПН-6(10) (поя 4, показана пунктиром). С другой стороны шкафа КРУН-10 кВ устанавливается второй разъединитель на анкерной опоре этого же пролета ВЛ 6(10) кВ (аналогично первому).
1. Выключатель масляный ВК-10 или вакуумный ВВ/TEL-10
2. Трансформатор тока ТЛМ-10
3. Трансформатор СН ОЛС или ТН НОМ
4. Проходной изолятор (У2)
5. Проходной изолятор (У1)
6. Ограничитель перенапряжения ОПН
7. Сетчатое ограждение с кронштейнами для изоляторов
8. Выкатная часть шкафа

1. Пунктиром показано оборудование (ОПН, ОЛС или НОМ) устанавливаемое в шкафу СП с АВР 6(10) кВ.
2. Шкаф КРУН-10 кВ с вакуумным выключателем имеет аналогичную компоновку оборудования.

Общий вид шкафа СП и СП с АВР 6(10) кВ
<table>
<thead>
<tr>
<th>Позиция</th>
<th>Наименование</th>
<th>Обозначение</th>
<th>К-во шт.</th>
<th>Масса (кг)</th>
<th>Примечание</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Шкаф КРУН-10 с кронштейнами и ограждением</td>
<td>КРУН-6(10)/П</td>
<td>1</td>
<td>105.0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Выкатная часть шкафа КРУН-10</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Разъединитель 10 кВ</td>
<td>РЛНД-1-10.200</td>
<td>1</td>
<td>65.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ТУ 34-14-10172-80</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Ограничитель перенапряжения</td>
<td>ОПН-6(10)/У1</td>
<td>3(6)</td>
<td>5.4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Изолятор штыревой</td>
<td>ШФ-20Г</td>
<td>6</td>
<td>3.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ГОСТ 22865-77</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Провод неизолированный</td>
<td>ГОСТ 639-80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Зажим петлевой типа</td>
<td>ТУ 34-13-10293-88</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Фундамент</td>
<td>-</td>
<td>1-т</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
10 кВ
Питающая ПС

Т.ТВ - Максимальная токовая защита с зависимой характеристикой в сочетании с токовой отсечкой

АПВ - Автоматическое повторное включение

1 - Порядковый номер защиты на схеме размещения

График согласования защит
(выполняется при привязке реального объекта)

Схема размещения защит и автоматики СП

ОТП. С. 03. 62. 44-97
10 кВ
Шины питания
ПС

ДЗ
- Делимая защита

T, Ta
- Максимальная токовая защита с зависимой характеристикой в сочетании с токовой отсечкой

АПВ
- Автоматическое повторное включение

АВР
- Устройство автоматического включения резервного питания

1
- Порядковый номер защиты на схеме размещения

График согласования защит
(выполняется при проектировке реального объекта)

Схема размещения защит и автоматики
СП с АВР

ОТПЛ. С. 03. 62. 44-97
Акционерное общество открытого типа по проектированию сетевых и энергетических объектов

АО РОСЭП

ИНФОРМАЦИОННЫЕ И МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ

по проектированию, строительству и эксплуатации сельских электрических сетей

20.05.97

N 03.16-97

Москва

О КТП 10/0,4 кВ городского типа
Самарского элд "Электроэцит"

Публикуем техническую информацию Самарского завода "Электроэцит" N TH-008 о комплексных трансформаторных подстанциях 10(6)/0,4 кВ типа КТПГ с трансформаторами мощностью от 250 до 630 кВА, предназначенных для работы в кабельных и воздушных электрических сетях общего назначения в городах и поселках городского типа, а также в сельских электрических сетях.

Указанные КТПГ 10(6)/0,4 кВ выпускает АО "Самарский завод "Электроэцит". Особенностью КТПГ является то, что они исполняются проходного типа, с подключением двух линий 10(6) кВ через выключатели нагрузки. Вводы линии 10 и 0,4 кВ могут быть кабельные или воздушные.

КТПГ могут быть поставлены одно или двухтрансформаторные.

Для сведения сообщаем, что АО РОСЭП разработан типовой проект по применению и установке КТПГ 10/0,4 кВ наружной установки с двумя кабельными вводами линий 10 кВ, производства АО Самарского завода "Электроэцит" (N ОТП...03.61.43-97). Типовой проект можно заказать в АО РОСЭП.

Приложение: упомянутая в тексте информация.

Зам. Генерального директора АО РОСЭП

Ю.М. Кадыков

36
ПОДСТАНЦИЯ
ТРАНСФОРМАТОРНАЯ КОМПЛЕКТНАЯ
НА НАПРЯЖЕНИЕ 10(6)/0,4 кВ ТИПА КТП.

Техническая информация
ТИ-008
I. Введение

I.1. Настоящая техническая информация содержит основные сведения на комплектную трансформаторную подстанцию на напряжение 10(6)/0,4 кВ мощностью 250, 400, 630 кВА для работы в кабельных и смешанных (кабельно-воздушных) электрических сетях 0,4 и 10 кВ общего назначения в городах и поселках городского типа (КТПГ).

Серийное производство освоено АО "Самарский завод "Электрощит" в 1994 году.

I.2. Конструкция КТПГ разработана АО "Самарский завод "Электрощит" с учетом технических требований арендного предприятия "Проектный институт "Типрокоммунэнерго" и на основании технического задания ОГК.104.095 ТЗ, разработанного АО "Электрощит" на подстанцию трансформаторную комплектную на напряжение 10(6)/0,4 кВ для городских сетей.

I.3. Изменения, связанные с совершенствованием конструкции и не влияющие на основные параметры и установочные размеры, могут быть внесены в изготовляемые КТПГ без дополнительного уведомления.

2. Назначение и условия эксплуатации

2.1. КТПГ предназначена для приема, преобразования и распределения электрической энергии трехфазного переменного тока частотой 50 Гц в однофазную четырехходовую, петлевой и других схемах электроснабжения городских электрических сетей.

2.2. КТПГ соответствует требованиям ГОСТ 14695-80 и ТУЗ412-001-00110473-94.

2.3. Климатическое исполнение и категория размещения - У1.

2.4. Проект применения и установки КТПГ должен разрабатываться индивидуально для каждого объекта.

2.5. КТПГ предназначена для работы в следующих условиях:
- интервал температур от минус 45° С до плюс 40° С;
- внешняя изоляция по ГОСТ 9920-89 - степень II - III;
- по условиям работы комплектующей аппаратуры эксплуатация допускается не более 1000 м над уровнем моря;
- район по ветру и гололеду I - IV в соответствии с ПУЭ-86;
- окружающая среда - взрыво- и пожаробезопасная, не содержащая токоведущей пыли, химически активных газов и испарений (атмосфера типа II по ГОСТ 15150-69);
- КТПГ не предназначена для работы в условиях тряски и вибрации.
2.6. Номенклатура, расшифровка условного обозначения КТПГ приведены в приложении I.

Технические данные

3.1. Основные параметры КТПГ приведены в таблице 1.

<table>
<thead>
<tr>
<th>Наименование</th>
<th>КТПГ-250</th>
<th>КТПГ-400</th>
<th>КТПГ-630</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2КТПГ-250</td>
<td>2КТПГ-400</td>
<td>2КТПГ-630</td>
</tr>
<tr>
<td>1. Мощность силового трансформатора, кВА</td>
<td>250</td>
<td>400</td>
<td>630</td>
</tr>
<tr>
<td>2. Номинальное напряжение на стороне ВН, кВ</td>
<td></td>
<td>6; 10</td>
<td></td>
</tr>
<tr>
<td>3. Номинальное напряжение на стороне НН, кВ</td>
<td></td>
<td>0,4</td>
<td></td>
</tr>
<tr>
<td>4. Номинальный ток сборных шин, А</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>УВН</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>РУНН</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Ток термической стойкости, в течение 1 с., кА</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>УВН</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Ток электродинамической стойкости, кА</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>УВН</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>РУНН</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Сопротивление изоляции цепей, МОм, не менее :</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>УВН</td>
<td></td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>РУНН</td>
<td></td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

|ТИ - 008|
8. Номинальный ток предохранителя УВН, А:
- для напряжения 6 кВ 50 80 100
- для напряжения 10 кВ 31,5 50 80

9. Вид линейных присоединений:
- УВН кабельный, воздушный
- РУНН кабельный

10. Степень защиты по ГОСТ 14254-80:
- УВН исполнение IP20
- РУНН исполнение IP20
- блок КТПГ исполнение брызгозащищенное IP34

3.2. Габаритные, установочные, присоединительные размеры КТПГ указаны в приложении 2.

3.3. Основные параметры встроенного выключателя нагрузки приведены в таблице 2.

Таблица 2.

<table>
<thead>
<tr>
<th>Наименование параметра</th>
<th>Значение параметра</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Наибольшее рабочее напряжение, кВ.</td>
<td>12</td>
</tr>
<tr>
<td>2. Номинальный ток, А</td>
<td>300</td>
</tr>
<tr>
<td>3. Коммутационная износостойкость при номинальном токе, количество включений</td>
<td>100</td>
</tr>
<tr>
<td>4. Механическая износостойкость, циклов "включить-отключить"</td>
<td>1000</td>
</tr>
<tr>
<td>5. Собственное время включения, С, не более</td>
<td>0,1</td>
</tr>
</tbody>
</table>

ТИ - 008
4. Описание и работа схемы электрических соединений.

4.1. Принципиальные схемы электрических соединений главных и вспомогательных цепей приведены в приложении 3, рис. 3 и 4.

4.2. КТПГ устанавливается в городской электрической сети и является транзитной. Питание подстанции может осуществляться по магистральной и радиальной электрическим линиям электроснабжения.

4.2.1. КТПГ может быть запитана как кабельным, так и воздушным вводом напряжением 6(10) кВ. При запитке КТПГ через воздушный ввод устанавливаются разрядники на стороне высшего напряжения и разъединитель 10 кВ.

5. Краткое описание конструкции и принципа действия.

5.1. КТПГ изготавливаются одно- и двухтрансформаторными (рис.1,2).

5.2. Однотрансформаторная КТПГ состоит из:
- металлического корпуса контейнерного типа;
- устройства высокого напряжения (УВН);
- распределительства низкого напряжения (РУНН);
- силового трансформатора;
- высоковольтного воздушного ввода и разъединителя 10(6) кВ (для КТПГ с воздушным вводом (выводом) 10(5) кВ);
- шкафа уличного освещения.

5.3. Двухтрансформаторная КТПГ состоит из двух однотрансформаторных КТПГ, установленных на расстоянии 600 мм друг от друга, с комплектом элементов для стыковки.

5.4. УВН состоит из трех шкафов с выключателями нагрузки и заземляющими ножами (рис.1,2):
- два шкафа отходящих линий (вводов) и шкаф с предохранителями, служащий для подключения и защиты силового трансформатора;
- при заказе УВН для встраивания в здание количество и набор ячеек могут быть различными.

5.5. Для запоминания информации о прохождении тока короткого замыкания (ТКЗ) в электрических сетях 6(10) кВ на блоке УВН устанавливается в ячейке вывода и ячейке вывода по одному указателю прохождения тока короткого замыкания (УТКЗ-2).
5.5.1. Срабатывание УТКЗ-2 осуществляется посредством контактных герконо-вых датчиков ТКЗ, установленных под щипцами двух фаз, работающих под действием магнитного поля, возникающего при протекании тока короткого замыкания.

5.6. В блоке распределительного устройства низкого напряжения (РУНН) расположены:
- вводной разъединитель;
- секционный разъединитель (для двухтрансформаторной КТПГ);
- блоки выключатель-предохранитель на 8 отходящих линий:

БПВ-2-4 шт. (250 A)
БПВ-4-4 шт. (400 A)

- шкаф учета электрической энергии (по заказу);
- низковольтная аппаратура в соответствии со схемой электрической принципиальной.

5.6.1. Конструкция блока РУНН предусматривает возможность установки по спецзаказу на отходящих линиях автоматических выключателей на номинальные токи 63 - 400 А.

5.6.2. На вводе РУНН после вводного разъединителя (по направлению потока мощности) установлены съемные шины для возможности установки трансформаторов тока в случае необходимости.

5.6.3. Шкаф учета электрической энергии имеет два исполнения:
- учета активной энергии;
- учета активной и реактивной энергии.

В шкафу учета активной электроэнергии устанавливается электронный счетчик активной энергии, в котором предусмотрен датчик приращения энергии для информационно-измерительных систем учета энергии и телеметрии мощности.

В комплект поставки шкафа входят три измерительных трансформатора тока.

5.6.4. В шкафу учета активной и реактивной энергии устанавливаются индукционные счетчики активной и реактивной энергии, резисторы обогрева.

5.6.5. Шкаф уличного освещения подключается к одному из фидеров РУНН. Схема предусматривает возможность автоматического включения вечернего и ночного уличного освещения. В шкафу уличного освещения также установлен счетчик активной энергии.

5.7. Блокировки, выполненные в КТПГ, соответствуют требованиям ГОСТ 12.2.007.4-75.
6. УСТАНОВКА.

6.1. КТПГ устанавливается на фундаменте высотой 0,2 - 0,4 м. Фундамент может быть заглубленный с применением железобетонных стоек серии УСО-5А и незаглубленный с применением стандартных бетонных блоков типа ФБС.

По аналогии с приведенными в приложении фундаментами могут быть применены и другие конструкции фундаментов.

6.2. Фундаменты рекомендуются для площадок, сложенных грунтом с нормативными значениями прочностных и деформационных характеристик, приведенных в таблицах 1 и 2 приложения СНиП 2.02.07-83.

Исключение составляют сильносуглинистые грунты, к которым могут быть отнесены супеси, суглинки и глины с показателем консистенции J>0,5 на площадях, для которых разница расстояния от поверхности планировки до уровня грунтовых вод и расчетная глубина промерзания менее 1,5 м.

7. ЗАЗЕМЛЕНИЕ И ГРОЗОЗАЩИТА

Заземляющее устройство выполняется общим для КТПГ и разъединителей 10 кВ (вариант с высоковольтным воздушным вводом (выходом)).

Сопротивление заземляющего устройства принимается в соответствии с ПУЭ глава 1.7.

8. КОМПЛЕКТНОСТЬ ПОСТАВКИ.

8.1. В комплект поставки КТПГ входит:
- блок - здание со смонтированным блоком УВН, силовым трансформатором и блоком РУНН;
- высоковольтный воздушный ввод и разъединитель (для КТПГ с воздушным вводом (выходом));
- шкаф уличного освещения (по заказу);
- узлы стыковки для двухтрансформаторной - КТПГ;
- элементы контура заземления (по заказу);
- запасные части и принадлежности по ведомости ЗНП.
- шкаф учета активной и реактивной энергии (по заказу).
8.2. К каждому комплекту КТПГ приложена следующая документация:
- техническое описание и инструкция по эксплуатации на КТПГ - 2 экз.;
- паспорт на КТПГ - 1 экз.;
- комплект паспортов и инструкций по эксплуатации на комплектующее
 оборудование, подвергающееся наладке и ремонту в процессе эксплуатации - 1 экз.;
- паспорт и инструкция по эксплуатации на силовой трансформатор - 1 экз.;
- ведомость ЗИП - 1 экз.

9. Оформление заказа

Заказ необходимо отправить по следующему почтовому адресу:
443048, Самира, 48, АО "Электроцент", заместителю директора по коммерческим
вопросам Якубовичу Ю.А.
Примерный текст: Сообщите возможность принятия и сроки изготовления заказа:
КТПГ (ВВ)-400/100,4-94-VI в количестве...}
При необходимости вы можете сообщить нужные Вам сроки.
Наши телефоны: 50-45-62 коммерческо-договорной отдел
50-90-67 отдел главного конструктора
50-93-52 -"-
<table>
<thead>
<tr>
<th>Общее наименование</th>
<th>Назначение подстанции</th>
<th>Комплектная трансформаторная подстанция для городских сетей</th>
<th>Высоковольтный ввод (В), высоковольтный, В, В-воздушный, В-воздуго-воздушный</th>
<th>Номинальное напряжение, кВ</th>
<th>Номинальное напряжение на стороне НН, кВ</th>
<th>Год разработки рабочих чертежей</th>
<th>Климатическое исполнение и категория размещения</th>
</tr>
</thead>
<tbody>
<tr>
<td>КТПГ</td>
<td>(КК) -</td>
<td>250/6/0,4-</td>
<td>94-</td>
<td>VI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>КТПГ</td>
<td>(КК) -</td>
<td>400/6/0,4-</td>
<td>94-</td>
<td>VI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>КТПГ</td>
<td>(КК) -</td>
<td>630/6/0,4-</td>
<td>94-</td>
<td>VI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>КТПГ</td>
<td>(ВК) -</td>
<td>250/6/0,4-</td>
<td>94-</td>
<td>VI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>КТПГ</td>
<td>(ВК) -</td>
<td>400/6/0,4-</td>
<td>94-</td>
<td>VI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>КТПГ</td>
<td>(ВК) -</td>
<td>630/6/0,4-</td>
<td>94-</td>
<td>VI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>КТПГ</td>
<td>(КВ) -</td>
<td>250/6/0,4-</td>
<td>94-</td>
<td>VI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>КТПГ</td>
<td>(КВ) -</td>
<td>400/6/0,4-</td>
<td>94-</td>
<td>VI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>КТПГ</td>
<td>(КВ) -</td>
<td>630/6/0,4-</td>
<td>94-</td>
<td>VI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>КТПГ</td>
<td>(КЗ) -</td>
<td>250/6/0,4-</td>
<td>94-</td>
<td>VI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>КТПГ</td>
<td>(КЗ) -</td>
<td>400/6/0,4-</td>
<td>94-</td>
<td>VI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>КТПГ</td>
<td>(КЗ) -</td>
<td>630/6/0,4-</td>
<td>94-</td>
<td>VI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>КТПГ</td>
<td>(ВВ) -</td>
<td>250/6/0,4-</td>
<td>94-</td>
<td>VI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>КТПГ</td>
<td>(ВВ) -</td>
<td>400/6/0,4-</td>
<td>94-</td>
<td>VI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>КТПГ</td>
<td>(ВВ) -</td>
<td>630/6/0,4-</td>
<td>94-</td>
<td>VI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2КТПГ</td>
<td>(КК) -</td>
<td>250/6/0,4-</td>
<td>94-</td>
<td>VI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2КТПГ</td>
<td>(КК) -</td>
<td>400/6/0,4-</td>
<td>94-</td>
<td>VI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2КТПГ</td>
<td>(КК) -</td>
<td>630/6/0,4-</td>
<td>94-</td>
<td>VI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2КТПГ</td>
<td>(КК) -</td>
<td>250/6/0,4-</td>
<td>94-</td>
<td>VI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2КТПГ</td>
<td>(КК) -</td>
<td>400/6/0,4-</td>
<td>94-</td>
<td>VI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2КТПГ</td>
<td>(КК) -</td>
<td>630/6/0,4-</td>
<td>94-</td>
<td>VI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2КТПГ</td>
<td>(КВ) -</td>
<td>250/6/0,4-</td>
<td>94-</td>
<td>VI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2КТПГ</td>
<td>(КБ) -</td>
<td>400/6/0,4-</td>
<td>94-</td>
<td>VI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2КТПГ</td>
<td>(КБ) -</td>
<td>630/6/0,4-</td>
<td>94-</td>
<td>VI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2КТПГ</td>
<td>(КБ) -</td>
<td>250/6/0,4-</td>
<td>94-</td>
<td>VI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2КТПГ</td>
<td>(КБ) -</td>
<td>400/6/0,4-</td>
<td>94-</td>
<td>VI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2КТПГ</td>
<td>(КБ) -</td>
<td>630/6/0,4-</td>
<td>94-</td>
<td>VI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2КТПГ</td>
<td>(ВВ) -</td>
<td>250/6/0,4-</td>
<td>94-</td>
<td>VI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2КТПГ</td>
<td>(ВВ) -</td>
<td>400/6/0,4-</td>
<td>94-</td>
<td>VI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2КТПГ</td>
<td>(ВВ) -</td>
<td>630/6/0,4-</td>
<td>94-</td>
<td>VI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>КТПГ</td>
<td>(КК) -</td>
<td>250/10/0,4-</td>
<td>94-</td>
<td>VI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>КТПГ</td>
<td>(КК) -</td>
<td>400/10/0,4-</td>
<td>94-</td>
<td>VI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>КТПГ</td>
<td>(КК) -</td>
<td>630/10/0,4-</td>
<td>94-</td>
<td>VI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>КТПГ</td>
<td>(ВК) -</td>
<td>250/10/0,4-</td>
<td>94-</td>
<td>VI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>КТПГ</td>
<td>(ВК) -</td>
<td>400/10/0,4-</td>
<td>94-</td>
<td>VI</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ТИ - 008
<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>КТПГ</td>
<td>(ВК)</td>
<td>630/</td>
<td>10/</td>
<td>0,4-</td>
<td>94-</td>
<td>У1</td>
</tr>
<tr>
<td></td>
<td>КТПГ</td>
<td>(КВ)</td>
<td>250/</td>
<td>10/</td>
<td>0,4-</td>
<td>94-</td>
<td>У1</td>
</tr>
<tr>
<td></td>
<td>КТПГ</td>
<td>(КВ)</td>
<td>400/</td>
<td>10/</td>
<td>0,4-</td>
<td>94-</td>
<td>У1</td>
</tr>
<tr>
<td></td>
<td>КТПГ</td>
<td>(КВ)</td>
<td>630/</td>
<td>10/</td>
<td>0,4-</td>
<td>94-</td>
<td>У1</td>
</tr>
<tr>
<td></td>
<td>КТПГ</td>
<td>(ВВ)</td>
<td>250/</td>
<td>10/</td>
<td>0,4-</td>
<td>94-</td>
<td>У1</td>
</tr>
<tr>
<td></td>
<td>КТПГ</td>
<td>(ВВ)</td>
<td>400/</td>
<td>10/</td>
<td>0,4-</td>
<td>94-</td>
<td>У1</td>
</tr>
<tr>
<td></td>
<td>КТПГ</td>
<td>(ВВ)</td>
<td>630/</td>
<td>10/</td>
<td>0,4-</td>
<td>94-</td>
<td>У1</td>
</tr>
<tr>
<td></td>
<td>2КТПГ</td>
<td>(КК)</td>
<td>250/</td>
<td>10/</td>
<td>0,4-</td>
<td>94-</td>
<td>У1</td>
</tr>
<tr>
<td></td>
<td>2КТПГ</td>
<td>(КК)</td>
<td>400/</td>
<td>10/</td>
<td>0,4-</td>
<td>94-</td>
<td>У1</td>
</tr>
<tr>
<td></td>
<td>2КТПГ</td>
<td>(КК)</td>
<td>630/</td>
<td>10/</td>
<td>0,4-</td>
<td>94-</td>
<td>У1</td>
</tr>
<tr>
<td></td>
<td>2КТПГ</td>
<td>(ВК)</td>
<td>250/</td>
<td>10/</td>
<td>0,4-</td>
<td>94-</td>
<td>У1</td>
</tr>
<tr>
<td></td>
<td>2КТПГ</td>
<td>(ВК)</td>
<td>400/</td>
<td>10/</td>
<td>0,4-</td>
<td>94-</td>
<td>У1</td>
</tr>
<tr>
<td></td>
<td>2КТПГ</td>
<td>(ВК)</td>
<td>630/</td>
<td>10/</td>
<td>0,4-</td>
<td>94-</td>
<td>У1</td>
</tr>
<tr>
<td></td>
<td>2КТПГ</td>
<td>(ВК)</td>
<td>250/</td>
<td>10/</td>
<td>0,4-</td>
<td>94-</td>
<td>У1</td>
</tr>
<tr>
<td></td>
<td>2КТПГ</td>
<td>(ВК)</td>
<td>400/</td>
<td>10/</td>
<td>0,4-</td>
<td>94-</td>
<td>У1</td>
</tr>
<tr>
<td></td>
<td>2КТПГ</td>
<td>(ВК)</td>
<td>630/</td>
<td>10/</td>
<td>0,4-</td>
<td>94-</td>
<td>У1</td>
</tr>
<tr>
<td></td>
<td>2КТПГ</td>
<td>(ВВ)</td>
<td>250/</td>
<td>10/</td>
<td>0,4-</td>
<td>94-</td>
<td>У1</td>
</tr>
<tr>
<td></td>
<td>2КТПГ</td>
<td>(ВВ)</td>
<td>400/</td>
<td>10/</td>
<td>0,4-</td>
<td>94-</td>
<td>У1</td>
</tr>
<tr>
<td></td>
<td>2КТПГ</td>
<td>(ВВ)</td>
<td>630/</td>
<td>10/</td>
<td>0,4-</td>
<td>94-</td>
<td>У1</td>
</tr>
</tbody>
</table>
Рис. 1 Общий вид однофазного трансформаторной KTPG.

1 - рама основания блока-заливки KTPG; 2 - дверь отсека УВН; 3 - блок-заливка KTPG; 4 - воздушная; 5 - дверь отсека силового трансформатора; 6 - блок УВН; 7 - часть для удержания масла; 8 - силовой трансформатор; 9 - блок РЗПН; 10 - дверь отсека РЗПН; 11 - клеммник; 12 - блок высоковольтного воздушного ввода; 13 - стойка SB-1; 14 - труба; 15 - кронштейн; 16 - изолатор; 17 - разъединитель; 18 - блок высоковольтного воздушного вывода; 19 - изолатор; 20 - проходной изолатор; 21 - разрядник.
Блок УВН

Блок РУНН

Рис. 3. Схема электрических соединений главных цепей однотрансформаторной КТПГ
Рис. 4. Схема электрических соединений главных цепей двухтрансформаторной КТПГ